
Journal of King Saud University – Computer and Information Sciences 34 (2022) 5286–5295
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
Multi-level residual network VGGNet for fish species classification
https://doi.org/10.1016/j.jksuci.2021.05.015
1319-1578/� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: eko@ubhara.ac.id (E. Prasetyo), nanik@if.its.ac.id (N. Suciati),

chastine@if.its.ac.id (C. Fatichah).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Eko Prasetyo a,b, Nanik Suciati a,⇑, Chastine Fatichah a

aDepartment of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember, Jl. Raya ITS, Surabaya 60111, Indonesia
bDepartment of Informatics, Faculty of Engineering, Universitas Bhayangkara Surabaya, Jl. Ahmad Yani 114, Surabaya 60231, Indonesia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 31 December 2020
Revised 4 May 2021
Accepted 29 May 2021
Available online 5 June 2021

Keywords:
Multi-level residual
Low level feature
Convolutional neural network
Asymmetric convolution
Fish species classification
VGGNet
The development of an image-based fish classification system using Convolutional Neural Network (CNN)
has the advantages of no longer directly conducting features extraction and several features analysis.
These steps has been involved by cascading convolution from initial to final block, where the initial, mid-
dle, and final blocks produce low-, middle-, and high-level features, respectively. Due to cascading con-
volution, CNN produces only high-level features. However, fish classification requires not only high-level
features but also low-level features such as points, lines, and textures for representing edge spines, gill
covers, fins, and skin textures in order to achieve higher performance; furthermore, CNN generally has
not yet incorporated low-level features in the last block. In this paper, we proposed Multi-Level
Residual (MLR) as a new residual network strategy by combining low-level features of the initial block
with high-level features of the last block by applying Depthwise Separable Convolution. We also pro-
posed MLR-VGGNet as a new CNN architecture inherited from VGGNet and strengthened it using
Asymmetric Convolution, MLR, Batch Normalization, and Residual features. Our experimental results
show that MLR-VGGNet achieved an accuracy of 99.69%, outperformed original VGGNet relative up to
10.33% and other CNN models relative up to 5.24% on Fish-gres and Fish4-Knowledge dataset.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fish species manual classification is challenging, time-
consuming, and requires experience, especially when encountering
similar fish species. We can recognize the differences by more clo-
sely observing body shape, color, and skin contours. Developing an
automatic fish classification system on an image with various
backgrounds and lighting conditions is challenging. Hence, several
earlier works have been done in developing an image-based appli-
cation for fish species classification. For example, a system to rec-
ognize fish species living in an open underwater environment (Qin
et al., 2016), fish detection and counting on a video captured from
the sea (Labao and Naval, 2019), a system to detect and classify fish
species to monitor changes in the relative abundance of fish popu-
lations at sea (Jalal et al., 2020). In the automatic image-based fish
species classification system using a hand-crafted features-based
approach (Bermejo, 2007; Hu et al., 2012; Qin et al., 2016;
Tharwat et al., 2018), it achieves optimal performance by combin-
ing low-level features (presence of minor objects), such as points,
edges, textures, for representing edge spines, gill covers, fins, and
skin textures; and high-level features (presence of the major
object), such as heads, tails and other body parts. Therefore, the
development of a classification system by combining low- and
high-level features promises higher performance. Nevertheless, a
hand-crafted features-based approach requires high effort related
to data preprocessing such as anomaly detection, normalization,
incorrect data treatment, and feature selection.

Another one is non-hand-crafted features-based approach using
Convolutional Neural Network (CNN), where it has the advantages
of no longer explicitly conducting feature extraction and several
features analysis. These steps has been included in the cascading
convolution from initial block to final block using particular convo-
lution strategies. The initial, middle, and final blocks produce low,
middle, and high-level features, respectively. The research related
to this approach, for example, Deepfish framework to recognize
fish from underwater video captured in the ocean observation
network (Qin et al., 2016); the system was trained on Fish4-
Knowledge dataset and achieved an accuracy of 98.64%. A fish
detection system by combining Region-based Convolutional

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2021.05.015&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2021.05.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:eko@ubhara.ac.id
mailto:nanik@if.its.ac.id
mailto:chastine@if.its.ac.id
https://doi.org/10.1016/j.jksuci.2021.05.015
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

E. Prasetyo, N. Suciati and C. Fatichah Journal of King Saud University – Computer and Information Sciences 34 (2022) 5286–5295
Neural Networks and Long Short-Term Memory to detect and
localize fish from a dataset of 18 videos taken in the wild and
achieved detection performance (Labao and Naval, 2019). CNN is
also used to solve common problems such as soft drink type clas-
sification (Hafiz et al., 2020), human action recognition (Jaouedi
et al., 2020), and aging classification (Boussaad and Boucetta,
2020). CNN has also effectively solved various problems using a
transfer learning technique, such as the classification of materials
using a crystal graph convolutional neural network (CGCNN) to
enhance classification performance (Lee and Asahi, 2021), classifi-
cation on magnetic resonance images using LeNet-like model
(Aderghal et al., 2020), geochemical anomaly detection (Li et al.,
2020), and also. crack detection of civil infrastructure (Yang
et al., 2020).

Combining CNN with other approaches such as heuristics can
also strengthen systems to solve problems, including the combina-
tion of CNN and Genetic Algorithm (GA) to find the best architec-
tural combination for brain tumor classification (Kabir Anaraki
et al., 2019), using GA to analyze the microscopy images dataset
for training data of CNN (Połap, 2020), using GA to determine the
best-combined weight of the three CNN models (Ayan et al.,
2020), and also GA for initializing CNN weights (Ijjina and
Chalavadi, 2016). On the other hand, these hybrid approaches
increase performance but using the more intricate model and
expensive computation, which is not ideal for applications on
devices with limited storage space, such as mobile devices. We
require certain models that comparable results to other models
while using smaller model sizes and computations.

Several researchers have developedmany CNN architectures, for
example, VGGNet. (Simonyan and Zisserman, 2015), ResNet (He
et al., 2016), Inception V3 (Szegedy et al., 2016), DenseNet (Huang
et al., 2017), Xception (Chollet, 2017), and MobileNet (Howard
et al., 2017). Previous studies on CNN established convolutional
concepts aimed to achieve better performance and/or simplifying
architecture while retaining performance. VGGNet simplifies con-
volutional architecture by using smaller kernels (Simonyan and
Zisserman, 2015), ResNet uses the residual concept (skip connec-
tion) to maintain low-level features that may be lost due to
higher-level convolution (He et al., 2016), Densenet also enhances
the concept of residue using concatenation and convolution
(Huang et al., 2017). However, the residues sent, both ResNet and
Densenet, hold only within the same block, so the low-level fea-
tures of the initial block have not been retained until the last block.
This means that the features produced at the end of the convolution
are typically high-level features as well. In addition, VGGNet has
succeeded in simplifying the AlexNet architecture by using smaller
convolutional kernel sizes, but VGGNet still uses a vast number of
parameters and its performance has been outperformed by newer
models. Reducing the number of parameters by removing the fifth
block is beneficial since newer CNN models usually use a more sig-
nificant number of parameters to produce better performance.

As discussed earlier, CNN conducted cascading convolution;
consequently, it produces only high-level features in the final block
and leaves low- and middle-features from the earlier block. How-
ever, fish classification requires both a low-level and a high-level
feature map to achieve optimal classification performance. On
the other hand, the current CNN has not yet combined low- and
high-level features. Hence, we intentionally assemble low- and
high-level features to overcome this issue by proposing Multi-
Level Residual VGGNet (MLR-VGGNet) with the following details:

� Proposing Multi-Level Residual (MLR) as a new residual net-
work strategy

MLR combines low-level features of the initial block with high-
level features of the end block by applying DSC computation. At the
5287
end of each block where the feature map will be retained (low-
level features), a branch is added using MLR to forward the low-
level features to the upper convolutional layer. DSC will project
the low-level feature map using one convolution to adjust the fea-
ture map size with the upper feature map size.

� Using pretrained VGGNet as backbone with parameter
reduction

As indicated earlier, VGGNet has a severe problem that it has a
vast number of parameters. We use VGGNet as a backbone in our
proposed CNN architecture without a fifth block and replace it with
asymmetric convolution (AC). AC is a convolution consisting of two
sequence layers with a 3x1 and 1x3 filters for decreasing number
of parameter (Szegedy et al., 2016). Usually, the number of param-
eters in the final block is vaster than the initial block, so it is pos-
sible to reduce the number of parameters by replacing the fifth
block with AC. We use pre-trained VGGNet as the backbone, so
we no longer need to train CNN using imagenet anymore. We
retrain the additional new convolution layers and freeze the
remaining layers to speed up the training process and achieve opti-
mal performance.

� Strengthening the asymmetric convolution (AC) using batch
normalization (BN) and residual mechanism

BN can obtain a stable distribution of the activation value and
shorten the epoch training (Amin et al., 2020; Wang et al., 2019)
by calculating normalization with scaling and shifting (Ioffe and
Szegedy, 2015), while Residual Network (ResNet) conveys the con-
cept of residual features (skip connection) to keep the lower layer
map features (He et al., 2016). We maintain each AC layer’s fea-
tures map by sending it to the next layer and add BN to get stable
output distribution. This residual embedding does not require
additional parameters to the CNN model so that it does not
increase the model size.

We compared our proposed architecture’s performance with
state-of-the-art such as original VGG16, original VGG19, ResNet50,
Inception V3, and Xception using Fish-gres (3248 images and eight
fish species) and Fish4-Knowledge (F4K) dataset (27,320 images
and 23 fish species). The experimental results show that our pro-
posal achieves better performance compared to state-of-the-art
using pre-trained CNN models. Hence, our model resolves the case
of fish species classification.

The rest of this paper is organized as follows. Section 2
discusses related work to fish species classification and VGGNet.
Section 3 describes our proposal and some other components.
Section 4 explains our experiment result and discussion of perfor-
mance comparison with several CNN models. Finally, section 5
summarizes the conclusion of this research.
2. Related work

2.1. Fish species classification

Research in fish species classification is still overgrowing both
hand-crafted features-based approach and Convolutional Neural
Network (CNN) features-based approach. In hand-crafted
features-based approach, a fish species classification system was
developed using color and texture and a multi-class support vector
machine (Hu et al., 2012); by assembling feature extraction, fea-
ture reduction, and classification (Tharwat et al., 2018); and also
fish age classification based on the combination of morphological
features and its biometrics (Bermejo, 2007). In the CNN features-
based approach, Deepfish framework was developed to recognize

E. Prasetyo, N. Suciati and C. Fatichah Journal of King Saud University – Computer and Information Sciences 34 (2022) 5286–5295
fish from underwater video (Qin et al., 2016). And also a fish detec-
tion system by combining Region-based Convolutional Neural Net-
works and Long Short-TermMemory to detect and fish localization
(Labao and Naval, 2019).

Most studies in the field of fish species classification have only
focused on applying or combining certain features and classifiers to
achieve optimal performance. Neither the conventional approach
nor the CNN-based approach, no research uses low-level and
high-level features as the basis for classifying fish species classifi-
cation. The use of these two features promises optimal
performance.

2.2. VGGNet

VGGNet was introduced in the challenge of the 2014 ILSVRC
(ImageNet Large Scale Visual Recognition Competition) in the clas-
sification task (Simonyan and Zisserman, 2015) and had significant
improvements over ZFNet and AlexNet (Krizhevsky et al., 2012).
Since then, VGGNet has been applied in many classification cases
(Rangarajan et al., 2018; Shallu and Mehra, 2018). VGGNet was
also compared with several fine-tuned pre-trained CNN architec-
tures, such as Inception-V3, VGG16, and ResNet50; the VGG16
achieved the highest accuracy (Rodrigues et al., 2019). The other
researcher also found the best average performance was achieved
by Inception V3, ResNet50, GoogleNet, VGG16, AlexNet, and
VGG19 (Lumini and Nanni, 2019).

Recent research has suggested that different architectural mod-
els provide different performance results in different cases. This
performance is also obtained from the architectural parameters
of each CNN. Especially for VGGNet, it has a severe problem since
it has a vast number of parameters. We propose an architecture
that inherits VGGNet with fewer parameters and higher
performance.

3. Proposed methods

3.1. VGGNet as the backbone of the architecture

The VGGNet consists of five blocks, in which each block consists
of a convolutional layer followed by max-pooling. The most popu-
lar architectures of VGGNet are VGG16 (13 convolutional layers
and three fully connected layers) and VGG19 (16 convolution lay-
ers and three fully connected layers). For example, the convolution
part of the VGG16 architecture is shown in Fig. 1. The convolution
part of VGG16 consists of five blocks, where the number of layers
in the first until the fifth block are two, two, three, three, and three
layers, respectively. The feature maps for each block are 64, 128,
256, 512, and 512 feature maps, respectively. In addition, the num-
Fig. 1. Architectu

5288
ber of parameters for each block is 38.72 thousand, 221.44 thou-
sand, 1.48 million, 5.9 million, and 7.08 million, respectively. The
total of parameters is 14.71 million. VGG19 has a similar architec-
ture, consisting of 16 convolutional layers and three fully con-
nected layers with 20.02 million parameters.

After winning the ILSVRC, VGGNet has become a prevalent
model and has been developed by numerous researchers for vari-
ous purposes, including classification and object detection. How-
ever, VGGNet performance was already outperforming other
newer models, therefore in this research, we improved VGGNet
with fewer parameters and achieved superior performance than
newer models. Reducing the number of parameters is beneficial
since newer CNN models usually use a more significant number
of parameters to produce better results. Hence, to diminish the
number of parameters, the best approach is eliminating the final
convolution block (the fifth block) since this block generates
high-level features while keeping the previous block. We also use
pre-trained VGGNet as initial weights to speed up training compu-
tation and inherit low-level features that have been created during
training with the imagenet dataset. Meanwhile, we freeze the four
blocks during training to keep the weights and preserve the layers’
generalization.

3.2. Asymmetric convolution

Asymmetric Convolution (AC), one method of Factorizing Con-
volution, aims to reduce the number of connections and/or param-
eters of CNN without reducing recognition performance (Szegedy
et al., 2016, 2015). In AC, a mask filter n � n of a convolutional layer
is split into two layers with two sequence asymmetric filters, one
filter of n � 1 and 1 � n. The mathematical expression as follows:

y ¼ F Wi; Ff gð Þ ¼
XM
i¼�M

XN
j¼�N

W i; jð ÞF x� i; y� jð Þ

¼
XM
i¼�M

Wx ið Þ
XN
j¼�N

Wy jð ÞF x� i; y� jð Þ
" #

ð1Þ

whereW is a 2D-kernel filter,M and N are the row and column ofW,
F is 2D-image,Wx is a 1D-kernel along x-dimension, and Wy is a 1D-
kernel along y-dimension. The number of parameters for a convolu-
tion layer is calculated as follows:

Pk ¼ M:N:f k�1 þ 1ð Þ:f k ð2Þ
where Pk is the number of parameters for k-layer, fk-1 is the number
of feature maps of k-1 layer, and fk is the number of feature maps of
k layer. For example, a convolutional layer with kernel size 3 � 3,
input 32 feature map, and output 32 feature map, then the number
re of VGG16.

E. Prasetyo, N. Suciati and C. Fatichah Journal of King Saud University – Computer and Information Sciences 34 (2022) 5286–5295
network connection or parameters are 3� 3� 32þ 1ð Þ�
32 ¼ 9:248 parameters. The AC reduces the number of parameters
by filter 3 � 1 with 3� 1� 32þ 1ð Þ � 32 ¼ 3:104 parameters fol-
lowed by filter 1x3 with 1� 3� 32þ 1ð Þ � 32 ¼ 3:104 parameters.
The total number of parameters would be 6,208 parameters, and
the reduction is 33%. This theoretical calculation example proves
that AC reduces the parameters of the CNN.

The difference between standard convolution and asymmetric
convolution is presented in Fig. 2. The standard convolution with
filter size 3 � 3 is conducted by multiplying each pixel and sur-
rounding neighbor with wi filter, as presented in Fig. 2 (a). The
AC consists of two sequence convolutions using a pair of asymmet-
ric filters, where the convolutional process is conducted by operat-
ing the 3 � 1 filter followed by 1 � 3 filter, as presented in Fig. 2
(b)-(c).

3.3. Residual block and batch normalization

As discussed earlier, the skip connection in our proposed archi-
tecture was implemented to support higher classification results.
We put a skip connection on each AC layer so that the residue from
the previous layer was added at the end of the AC convolution.
Residual block is defined using the equation as follows:

y ¼ F F; Wif gð Þ þ F ð3Þ
where F and y are the input and output layers viewed in the residual
block. Function F F; Wif gð Þ states the residual mapping trained in
the model. In our proposal, we use one layer, then F ¼WiF. There
are three ACs in our architecture; then the residual blocks will be
sent out three times.

The use of residual blocks is motivated by the fact that the iden-
tity mapping from one layer to the next is asymptotically equiva-
lent to using several nonlinear layers to estimate a complicated
function (He et al., 2016). Therefore, integrating residual blocks
into our proposed model would boost the system’s ability to han-
dle complex functions and generate high-level features. As stated
by the formula above, there is an identity mapping in the next
layer after feature map F.

The BN plays an essential role in stabilizing the distribution of
activation values and shortening the epoch (Ioffe and Szegedy,
2015). Therefore, we applied BN at each end of the AC layer to
get the distribution of ReLU activation results at the end of the
Fig. 2. Asymmetric Convolution, a. Convolution with 3 � 3 filter, b. Asymme

5289
AC layer. To calculate the normalization of y in the k-dimension
as a result of activation of the previous layer, we used this formula:

BNc;b yð Þ ¼ y� E y½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var v½ �p :cþ b ð4Þ

where E y½ � ¼ 1
N

PN
i¼1Fi is the average of all y data in the k-dimension,

whereas Var y½ � ¼ 1
N

PN
i¼1 y� yið Þ2 is the variance. Whereas c and b

are scale and shift parameter.
The use of three times AC in the new block can induce an inter-

nal covariate shift; as the training data and layers increase, the gra-
dient generated by the activation function gets closer to zero (Ioffe
and Szegedy, 2015). As a result, the training carried out also took
longer. We added BN at the end of each 3 � 1 and 1 � 3 kernel pair
convolution to prevent internal covariate shifts and speed up the
training process.

3.4. Depthwise separable convolution

Depthwise separable convolutions (DSC) is a convolution
method that breaks the standard convolution method into two
convolution layers, consisting of a depthwise convolution and a
pointwise convolution (Howard et al., 2017). Depthwise convolu-
tion used a single filter for each input channel, while pointwise
convolution used a 1 � 1 filter size to combine the outputs of
depthwise convolution. The difference between standard convolu-
tion and DSC is shown in Fig. 3.

Standard convolution obtains the output feature map using the
following formula:

yk;l;n ¼
X
i;j;m

F i;j;m;n:Fkþi�1;lþj�1;m ð5Þ

Depthwise convolution using individual filter per input channel
(depth), we used the following formula:

yk;l;m ¼
X
i;j

bF i;j;m:Fkþi�1;lþj�1;m ð6Þ

where F i;j;m;n is standard convolution, bF i;j;m is depthwise convolu-
tion with size of Dk � Dk. Then the DSC can be formulated into:

y ¼ DSC F; Wif gð Þ ¼ F bF F; Wif gð Þ
� �

ð7Þ
tric filters, c. Asymmetric Convolution with 3 � 1 filter and 1 � 3 filter.

Fig. 3. Convolution, (a) Standard convolution, (b) Depthwise separable convolution.

E. Prasetyo, N. Suciati and C. Fatichah Journal of King Saud University – Computer and Information Sciences 34 (2022) 5286–5295
where bF ðÞ uses kernel with size of Dk � Dk � 1 with amount M,
whereas FðÞ uses size of 1 � 1 � N. F is the input feature map,
and W is the kernel size of depthwise convolution.

In MobileNet, DSC is the key component of the convolution to
achieve tiny models with comparable performance to standard
convolution (Howard et al., 2017). It consumes less computational
resources due to its small size. DSC is an excellent choice for
adjusting the lower and upper layers’ feature maps with minimal
computation costs to realize MLR in our proposal. To support the
MLR-VGGNet model’s development, we need only one time DSC.
Fig. 4. Multi-Level Residual Network.
3.5. Multi-level residual network

Generally, CNN conducts a cascading convolution from the ini-
tial layer (producing low-level features) to the final layer (produc-
ing high-level features). The low-level features (presence of minor
objects) such as points, lines, and textures are produced by the ini-
tial convolution layer for representing edge spines, gill covers, fins,
and skin textures in the fish classification problem; while the high-
level features (presence of major objects) such as heads, tails, and
other body parts are produced by the final convolution layer. Due
to cascading convolution, the final layer only produces high-level
features. Although ResNet also proposes a residue (skip connec-
tion) to maintain low-level features that might be lost due to
higher-level convolutions, the residual delivery does not reach
final layers (He et al., 2016). Densenet also adds residues with con-
catenation and pointwise convolution, but the delivery of residues
ends in the same block, meaning that the CNN has not maintained
the initial block’s low-level features until the final block (Huang
et al., 2017). Therefore, we incorporate the low-level features at
the end of the VGGNet convolution block using skip connection
through one-time DSC for joining the low- and high-level features.

The main problem in sending low-level features to the final
layer is that the feature map sizes are not the same. For example,
in VGG16, the feature map size at the end of block one is
1122x64, while block four is 142 � 512. We cannot add a skip con-
nection from block one to the end of block four. Moreover, the fea-
ture map of block two and block three is 562 � 128 and 282 � 256,
respectively. Therefore, we proposed a Multi-Level Residue (MLR)
to resolve residues with different feature map sizes by modifying
the feature map source using a depthwise separable convolution
(DSC), as presented in Fig. 4. The source feature map is sent
through the skip connection branch, then convoluted using DSC
to adjust the feature map size in the destination layer. We did
not use zero paddings as a resizing method because there will be
5290
a mismatch in the feature’s spatial location. The use of one-time
DSC is for the following reasons: (1) No significant changes to
the features map; (2) Adjusting the size to the destination feature
map; (3) Using fewer parameters/computations.

Suppose Fi is the low-level features map of the lower layer, Wi

is the kernel of depthwise convolution according to Equation (7).
The DSCðÞ projects all N low-level features to be the same size as
F0, where F0 has size of h0 �w0 � d0 (height � width � feature).
The number of di features on the Fi layer is usually not the same
as the d0 in F0. Hence, we modify the DSC formula in Equation
(7) to b:

Fi

�I¿
¼ DSC Fi; Wi;d0f gð Þ ¼ F bF Fi; Wi;d0f gð Þ

� �
ð8Þ

E. Prasetyo, N. Suciati and C. Fatichah Journal of King Saud University – Computer and Information Sciences 34 (2022) 5286–5295
Therefore that Fi

�I¿
will be the same size as F0.

At this point, the d dimension is the same for all F, but not for h
and w. We needed to project the two dimensions to be h0 and w0;
we used max-pooling with size j = 2 N+1-i and stride the projection s.
We found that the projections of hi and wi into h0 and w0 are
achieved with a stride size s = 2 N+1-i. Therefore, max-pooling uses
the following Equation:

a lþ1ð Þ
j ¼ MaxPool a lð Þ

1 ; � � � ; a lð Þ
i ; � � � ; a lð Þ

n

� �
s
; i 2 R lð Þ

j ð9Þ

where R lð Þ
j is pooling region j at layer l, n ¼ R lð Þ

j

��� ��� is the number ele-

ment in R lð Þ
j . We formulated a stride s = 2 N+1-i if the reduction in the

image’s spatial size is also based on 2 (VGGNet). Thus, we modified
Equation (8) to implement max-pooling as follows:

Fi

�I¿
¼ MaxPool DSC Fi; Wi; d0f gð Þð Þn ð10Þ
Consequently, we used Equation (10) to project hi �wi � di to

be equal in size to h0 �w0 � d0. Hence, we combined all the feature
levels using the following formula:

Fy ¼
XN
i¼1

F
�I¿

i þ F0 ð11Þ

where Fi

�I¿
is a projected features map on layer i (low-level features),

meanwhile F0 is a high-level features map on the layer where we
combined all the projected featured maps and F0 into Fy as a result
of MLR operation.

3.6. Multi-level residual VGGNet

In this research, we proposed a CNN architecture that uses part
of the VGGNet architecture as the backbone (non-green block as in
Fig. 1) and adds several components, including Asymmetric Convo-
lution (AC), Multi-Level Residual (MLR), Residual Block (RB), and
Batch Normalization (BN). We used an AC block instead of the fifth
block of VGGNet, where AC doubled the number of layers but with
a smaller kernel size, namely two pairs of asymmetric filters (3 � 1
and 1 � 3 filters). In each convolution result using AC, we normal-
ized using BN to avoid internal covariate shift (ICS) and shorten the
epoch training. We also strengthened this block with a residual
block by adding a skip connection to each AC so that each layer’s
convolution results can be retained until the last layer. From the
design of MLR-VGGNet architecture presented in Fig. 5, we can
see that we retain the low-level features of the three blocks by
combining them at the end of the fourth block. We used MLR using
N = 3 by combining the high-level features with the low-level fea-
tures from the end of first block, the end of second block, and the
end of third block, at the end of fourth block. The first, second,
and third blocks present features size 1122 � 64, 562 � 128,
282 � 256, respectively. We projected them using DSC + max-
pooling so that everything is 142 � 512. Next, we combined all
the feature maps using the addition operator, followed by three
times AC, BN, and residual. In the end, we downsampled again
using max-pooling size 22 with stride 2 so that the feature map
became 72 � 512. The architecture was then connected with a
fully-connected layer to perform classification.

The pseudo-code of fish species classification is presented
below; we use the entire image as input for all CNN models. The

model generates a features map F
�I¿
, then processes it using the

fully-connected classifier to obtain a class label y. During the train-
ing, the system conducts augmentation to the training image and
then makes it as input for the model.
5291
Input: labeled training data as X
�I¿
¼ X 1ð Þ;X 2ð Þ; � � � ;X Kð Þ
n o

, K is the

total of classes.

Output: y ¼ f X
�I¿
 !

; % the class label of fish species, f ðÞ is CNN

model for classifying fish species

X Augment Xð Þ; % the augmented image from training data

F
�I¿
 MLR VGGNet X

� �
; % the extracted feature map from MLR-

VGGNet

y FC F
�I¿
 !

; % FCðÞ is the fully-connected layer for classifying

3.7. Testing

We used accuracy as the metric of performance, both training,
validation, and testing result. The accuracy is a comparison of the
right result classification with all classification conducted, using
the following formula:

Accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

ð12Þ

where TP is true positive, TN is true negative, FP is false positive,
and FN is false negative of all data used in training, validation, or
testing session.

4. Results and discussions

4.1. Dataset

In this study, we used the Fish-gres and Fish4-knowledge (F4k)
dataset to compare our proposed model and state-of-the-art per-
formance using a proportion of 60:20:20 for training, validation,
and test data, respectively—then we presented performance with
training, validation, and testing accuracy.

4.1.1. Fish-gres dataset
In this research, a dataset, called Fish-gres dataset, was col-

lected (https://data.mendeley.com/datasets/76cr3wfhff/1), in
which this dataset consists of 8 fish species, where the number
of images on each species varies from 240 images to 577 images
(Prasetyo et al., 2020). The example of image data is presented in
Fig. 6 (a)-(h), where the species are Chanos Chanos (500 images),
Johnius Trachycephalus (240 images), Nibea Albiflora (252
images), Rastrelliger Faughni (544 images), Upeneus Moluccensis
(577 images), Eleutheronema Tetradactylum (240 images), Ore-
ochromis Mossambicus (331 images), and Oreochromis Niloticus
(564 images), respectively.

4.1.2. Dataset Fish4-Knowledge
The Fish4-Knowledge (F4K) dataset is an underwater live fish

dataset captured from a video dataset in the open sea, used to eval-
uate a CNN-like architecture (Boom et al., 2012). The number of
images is 27,320 images divided into 23 species; each species’
image varies from 16 to 12,112. The unbalanced number of images
can also result in lacking performance.

4.2. Data augmentation

We conducted data augmentation to obtain more variations in
image and oversampling. Data augmentation is a strategy that
allows us to add diversity of the data based on the available data
without having to add new data. In this research, we used scale
augmentation to provide a variety of large and small sizes, rotation

https://data.mendeley.com/datasets/76cr3wfhff/1

Fig. 5. Multi-Level Residual VGG16.

Fig. 6. Fish-gres dataset, (a) Chanos Chanos, (b) Johnius Trachycephalus, (c) Nibea Albiflora, (d) Rastrelliger Faughni, (e) Upeneus Moluccensis, (f) Eleutheronema
Tetradactylum, (g) Oreochromis Mossambicus, (h) Oreochromis Niloticus.

E. Prasetyo, N. Suciati and C. Fatichah Journal of King Saud University – Computer and Information Sciences 34 (2022) 5286–5295
to provide various directions for taking images, translation to pro-
vide various positions of objects in the image, shearing to provide a
variety of shapes, and flipping to provide a variety between left and
right.

4.3. Software tools for experimental

We implemented our proposal by experimenting using Python
in Google Colaboratory with Tensorflow 2.3.0 and Keras 2.4.3; dur-
ing training, we used a Tesla T4 GPU with 16 GB of memory pro-
vided by Colab. We also use pre-trained CNN comparisons from
Keras Application, including VGGNet, Inception V3, ResNet50,
and Xception.

4.4. Design experiments

The performance of the proposed MLR-VGGNet was proven by a
comparison on various CNN models, such as the original VGG16,
VGG19, ResNet50, Inception V3, and Xception. In all comparison
models, a transfer learning from pre-trained weights available
was also used. The training parameters on all models is given, such
as batch size = 20, epoch = 60, optimizer = RMSProp, learning
rate = 1e-5, loss function = categorical cross-entropy.

During training, the four blocks of VGGNet were frozen; there-
fore, the weights did not change to retain the lower layers general-
ized to generate low-level features. Additional components such as
AC, BN, and residuals are fully trained to achieve weight with high-
level feature generation that corresponds to the fish species
classification.
5292
4.5. The comparison result using Fish-gres dataset

We conducted performance comparison with training, valida-
tion, and testing accuracy. The comparison between the proposed
architecture and the original VGGNet indicates that the proposed
model is superior to the original VGGNet, both VGG16, and VGG19.
Our proposed architecture achieved better performance on the data
test with 98.46% and 97.84% accuracy for VGG16 and VGG19 back-
bone, compared to the original VGG16 and VGG19 with 89.83%
and 87.51% accuracy, respectively. There is a relative increase of up
to 8.63% and 10.33%, respectively. These results show that the pro-
posed architecture is superior to the original VGGNet.

As presented in Table 1, the comparison with state-of-the-art
shows that our proposed model is also superior to all state-of-
the-art except ResNet50. Almost all methods gained high perfor-
mance; for example, ResNet50 achieved testing accuracy of
97.84%, while our proposed model achieved higher performance
of 98.46% accuracy. Our models also achieved the highest perfor-
mance during training and validation, where accuracy was up to
97.03% and 99.69%, respectively. Only ResNet50 has a competitive
performance upon our model, where the performance is close to
our proposal. Our proposal achieves a relative improvement of
up to 5.24% on the test data at the Inception V3 model.

The Fig. 7 shows examples of the results of our proposed classi-
fication and other models. In general, our proposals and other
models classify similarly, as seen in Fig. 7 (a), where our proposals
and other models classify correctly. In some instances, our pro-
posed model is more robust than other models, such as Fig. 7 (b),
MLR-VGG16, MLR-VGG19, and original VGG16, which classify cor-

Table 1
The performance (%) of models using Fish-gres and F4K dataset.

Model Fish-gres F4K

Training Val. Test Training Val. Test

VGG16 82.30 91.36 89.83 80.52 83.85 82.44
VGG19 76.30 89.93 87.51 86.21 90.14 88.07
ResNet50 95.20 98.42 97.84 82.80 90.40 88.12
Inception V3 82.85 91.61 93.22 77.55 87.75 85.66
Xception 89.95 95.73 93.53 80.20 86.75 83.70
MLR-VGG16 96.97 99.69 98.46 97.11 96.66 96.25
MLR-VGG19 97.03 98.92 97.84 98.09 97.84 97.09

Fig. 7. Examples of image classification results in the Fish-gres dataset, 0 : Chanos chanos; 1 : Johnius Trachycephalus; 2 : Nibea Albiflora; 3 Rastrelliger Faughni; 4 : Upeneus
Moluccensis; 5 : Eleutheronema Tetradactylum; 6 : Oreochromis Mossambicus; 7 : Oreochromis Niloticus.

Table 2
Comparison between our proposed and several CNN architectures in term the number of parameters, inference time and model size.

Model Parameter (millions) Decreased Parameters (%) Compared
to MLR-VGGNet

Inference time/image (ms) Model size (MB)

MLR-VGG16 MLR-VGG19

VGG16 14.71 14.34 �5.71 509 252
VGG19 20.02 37.06 22.32 643 273
ResNet50 23.59 46.59 34.08 173 874
Inception V3 21.80 42.20 28.67 117 484
Xception 20.86 39.60 25.46 227 864
MLR-VGG16 12.60 – – 556 281
MLR-VGG19 15.55 – – 679 302

E. Prasetyo, N. Suciati and C. Fatichah Journal of King Saud University – Computer and Information Sciences 34 (2022) 5286–5295
rectly while other models are incorrect. Moreover, in Fig. 7 (c) - (d),
our proposal and some other models classify correctly while the
rest are wrong. Our proposal is also robust in classifying images
with multiple fish, such as Fig. 7 (c), while the other models classify
the images incorrectly. However, in some instances, our proposal
does not classify correctly, as shown in Fig. 7 (e), where the single
fish is not correctly classified. In general, our proposal classifies fish
species similarly to other models, but it is more robust when deal-
ing with images that include several fish. This result demonstrates
that our proposed models correctly classified more images, with an
accuracy of up to 99.69%. The other models, such as ResNet50,
achieved the highest accuracy of 98.42%. In conclusion, our pro-
posed architecture model outperformed all state-of-the-art with
very satisfactory performance in Fish-gres dataset.
4.6. The comparison result using F4K dataset

In comparison using the F4K dataset, as presented in Table 1,
comparison with original VGG16 and VGG19, our proposal outper-
formed both. Our proposed model also achieved the highest perfor-
mance and outperformed all state-of-the-art training, validation,
and testing accuracy of 97.11%, 96.66%, and 96.25%, respectively
for VGG16, and accuracy of 98.09%, 97.84%, and 97.09%, respec-
5293
tively for VGG19. This experiment proves that our proposed
MLR-VGGNet architecture has a promising performance.

The interesting point is that all state-of-the-art cannot work
optimally with performance below 90% due to an imbalance data-
set. However, we also conducted augmentation in this experiment
but could not help improve performance. Performance using this
dataset shows that our proposed model can solve the imbalance
problem and achieve the best performance superior to all state-
of-the-art.
4.7. Analysis of parameters Number, inference time and model size

The number of parameters in the features learning part of sev-
eral architectures are presented in Table 2. These parameters were
not included the parameters in the classifier part of CNN. We
showed that our proposed model used a few features; MLR-
VGG16 and MLR-VGG19 use 12.60 and 15.55 million parameters,
respectively. These parameters are decreased by 14% and 22% com-
pared to the original VGG16 (14.71 million) and VGG19 (20.02 mil-
lion) parameters. MLR-VGGNet also has fewer parameters than
state-of-the-art such as ResNet50, Inception V3, and Xception,
which is less up to 46.59% on MLR-VGG16 vs ResNet50. Hence,
our proposed model used the lowest number of parameters.

E. Prasetyo, N. Suciati and C. Fatichah Journal of King Saud University – Computer and Information Sciences 34 (2022) 5286–5295
The result presented in Table 2 shows that our proposal’s infer-
ence needs slightly longer than the original VGGNet, while the
MLR-VGG16 and original VGG16 needed 556 and 509 ms, respec-
tively, 9% longer. In MLR-VGG19, the execution time is 6% longer
than the original VGG19. Meanwhile, other models are consider-
ably shorter than our proposal, even though other models use a
more significant number of parameters. Other models, such as Res-
net50 and Inception V3, require faster execution times because
they employ a more specific microarchitecture in computational
complexity. Although other models have faster execution times,
the required size models are also huge compared to MLR-
VGGNet. For example, ResNet50 and Xception require 874 MB
and 864 MB of space, respectively, to store architecture and
weights; and this is certainly not suitable for application on
devices with limited storage capacity such as mobile devices. The
MLR-VGG16 and MLR-VGG19, on the other hand, require 281 MB
and 302 MB, respectively, to store architecture and weights. This
number is also slightly higher than the original version by 12%
and 11%, respectively, but these numbers are also within reason-
able limits.

5. Conclusion

Automatic fish classification using Convolutional Neural Net-
work provides the advantage by renouncing several steps related
to data or features analysis through several cascading CNN convo-
lution. Nevertheless, cascading convolution on images produces
only high-level features in the final block and leaves low- and
middle-level features in earlier blocks. To keep going low- and
middle-level features at the final block, we propose Multi-Level
Residual (MLR) as a new residual network strategy by combining
low-level features of the initial block with high-level features of
the last block using depthwise separable convolution (DSC). We
use VGGNet as the backbone of the new CNN architecture with
improvisation by removing the fifth block and replacing it with
some components such as MLR, asymmetric convolution (AC),
batch normalization (BN), and residual features. We called them
as MLR-VGGNet to achieve higher fish classification performance.
Our experimental results show that MLR-VGGNet achieved better
performance than the other pre-trained CNN models, which
achieved an accuracy of up to 99.69% on the Fish-gres and F4K
datasets. The number of parameters has also been reduced by
37%. With excellent performance, our proposal is appropriate for
implementation in the automatic fish species classification system.

MLR-VGGNet uses conventional convolution, especially in the
first four blocks with a high number of parameters. This number
of parameters is still possible to be reduced through particular con-
volutional strategies and keep going the high performance; this
also requires further analysis in terms of initial weight considering
that MLR-VGGNet uses the initial weight of pre-trained VGGNet.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

We thank the Deputy in Strengthening Research and Develop-
ment, Ministry of Research and Technology / National Research
and Innovation Agency, Indonesia for supporting the research of
authors with contract number 829/PKS//ITS/2021, on March 10,
2021.
5294
References

Aderghal, K., Afdel, K., Benois-Pineau, J., Catheline, G., 2020. Improving Alzheimer’s
stage categorization with Convolutional Neural Network using transfer learning
and different magnetic resonance imaging modalities. Heliyon 6 (12), e05652.
https://doi.org/10.1016/j.heliyon.2020.e05652.

Amin, J., Sharif, M., Anjum, M.A., Raza, M., Bukhari, S.A.C., 2020. Convolutional
neural network with batch normalization for glioma and stroke lesion detection
using MRI. Cognit. Syst. Res. 59, 304–311. https://doi.org/10.1016/j.
cogsys.2019.10.002.

Ayan, E., Erbay, H., Varçın, F., 2020. Crop pest classification with a genetic
algorithm-based weighted ensemble of deep convolutional neural networks.
Comput. Electron. Agric. 179, 105809. https://doi.org/10.1016/
j.compag.2020.105809.

Bermejo, S., 2007. Fish age classification based on length, weight, sex and otolith
morphological features. Fish. Res. 84 (2), 270–274. https://doi.org/10.1016/
j.fishres.2006.12.007.

Boom, B.J., Huang, P.X., He, J., Fisher, R.B., 2012. Supporting ground-truth annotation
of image datasets using clustering. Proceedings of the 21st International
Conference on Pattern Recognition (ICPR2012). IEEE, Tsukuba, Japan.

Boussaad, L., Boucetta, A., 2020. Deep-learning based descriptors in application to
aging problem in face recognition. J. King Saud Univ. Comput. Inform. Sci.
https://doi.org/10.1016/j.jksuci.2020.10.002.

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions,
in: Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017. https://doi.org/10.1109/CVPR.2017.195

Hafiz, R., Haque, M.R., Rakshit, A., Uddin, M.S., 2020. Image-based soft drink type
classification and dietary assessment system using deep convolutional neural
network with transfer learning. J. King Saud Univ. – Comput. Inform. Sci.
https://doi.org/10.1016/j.jksuci.2020.08.015.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition.
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. https://doi.org/10.1109/CVPR.2016.90.

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., Adam, H., 2017. MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications.

Hu, J., Li, D., Duan, Q., Han, Y., Chen, G., Si, X., 2012. Fish species classification by
color, texture and multi-class support vector machine using computer vision.
Comput. Electron. Agric. 88, 133–140. https://doi.org/10.1016/
j.compag.2012.07.008.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected
convolutional networks, in: Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017. https://doi.org/10.1109/
CVPR.2017.243

Ijjina, E.P., Chalavadi, K.M., 2016. Human action recognition using genetic
algorithms and convolutional neural networks. Pattern Recogn. 59, 199–212.
https://doi.org/10.1016/j.patcog.2016.01.012.

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training
by reducing internal covariate shift, in: 32nd International Conference on
Machine Learning, ICML 2015.

Jalal, A., Salman, A., Mian, A., Shortis, M., Shafait, F., 2020. Fish detection and species
classification in underwater environments using deep learning with temporal
information. Ecol. Inf. 57, 101088. https://doi.org/10.1016/j.
ecoinf.2020.101088.

Jaouedi, N., Boujnah, N., Bouhlel, M.S., 2020. A new hybrid deep learning model for
human action recognition. J. King Saud Univ. – Comput. Inform. Sci. 32 (4), 447–
453. https://doi.org/10.1016/j.jksuci.2019.09.004.

Kabir Anaraki, A., Ayati, M., Kazemi, F., 2019. Magnetic resonance imaging-based
brain tumor grades classification and grading via convolutional neural
networks and genetic algorithms. Biocyber. Biomed. Eng. 39 (1), 63–74.
https://doi.org/10.1016/j.bbe.2018.10.004.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep
convolutional neural networks, in: Advances in Neural Information Processing
Systems.

Labao, A.B., Naval, P.C., 2019. Cascaded deep network systems with linked ensemble
components for underwater fish detection in the wild. Ecol. Inf. 52, 103–121.
https://doi.org/10.1016/j.ecoinf.2019.05.004.

Lee, J., Asahi, R., 2021. Transfer learning for materials informatics using crystal
graph convolutional neural network. Comput. Mater. Sci. 190, 110314. https://
doi.org/10.1016/j.commatsci.2021.110314.

Li, H.e., Li, X., Yuan, F., Jowitt, S.M., Zhang, M., Zhou, J., Zhou, T., Li, X., Ge, C., Wu, B.,
2020. Convolutional neural network and transfer learning based mineral
prospectivity modeling for geochemical exploration of Au mineralization
within the Guandian-Zhangbaling area, Anhui Province, China. Appl.
Geochem. 122, 104747. https://doi.org/10.1016/j.apgeochem.2020.104747.

Lumini, A., Nanni, L., 2019. Deep learning and transfer learning features for plankton
classification. Ecol. Inf. 51, 33–43.

Połap, D., 2020. An adaptive genetic algorithm as a supporting mechanism for
microscopy image analysis in a cascade of convolution neural networks.
Applied Soft Computing Journal 97, 106824. https://doi.org/10.1016/j.
asoc.2020.106824.

Prasetyo, E., Suciati, N., Fatichah, C., 2020. Fish-gres Dataset for Fish Species
Classification. https://doi.org/http://dx.doi.org/10.17632/76cr3wfhff.1

https://doi.org/10.1016/j.heliyon.2020.e05652
https://doi.org/10.1016/j.cogsys.2019.10.002
https://doi.org/10.1016/j.cogsys.2019.10.002
https://doi.org/10.1016/j.compag.2020.105809
https://doi.org/10.1016/j.compag.2020.105809
https://doi.org/10.1016/j.fishres.2006.12.007
https://doi.org/10.1016/j.fishres.2006.12.007
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0025
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0025
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0025
https://doi.org/10.1016/j.jksuci.2020.10.002
https://doi.org/10.1016/j.jksuci.2020.08.015
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0045
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0045
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0045
https://doi.org/10.1016/j.compag.2012.07.008
https://doi.org/10.1016/j.compag.2012.07.008
https://doi.org/10.1016/j.patcog.2016.01.012
https://doi.org/10.1016/j.ecoinf.2020.101088
https://doi.org/10.1016/j.ecoinf.2020.101088
https://doi.org/10.1016/j.jksuci.2019.09.004
https://doi.org/10.1016/j.bbe.2018.10.004
https://doi.org/10.1016/j.ecoinf.2019.05.004
https://doi.org/10.1016/j.commatsci.2021.110314
https://doi.org/10.1016/j.commatsci.2021.110314
https://doi.org/10.1016/j.apgeochem.2020.104747
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0110
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0110
https://doi.org/10.1016/j.asoc.2020.106824
https://doi.org/10.1016/j.asoc.2020.106824

E. Prasetyo, N. Suciati and C. Fatichah Journal of King Saud University – Computer and Information Sciences 34 (2022) 5286–5295
Qin, H., Li, X., Liang, J., Peng, Y., Zhang, C., 2016. DeepFish: Accurate underwater live
fish recognition with a deep architecture. Neurocomputing 187, 49–58. https://
doi.org/10.1016/J.NEUCOM.2015.10.122.

Rangarajan, A.K., Purushothaman, R., Ramesh, A., 2018. Tomato crop disease
classification using pre-trained deep learning algorithm, in: Procedia
Computer Science. Elsevier, pp. 1040–1047. https://doi.org/10.1016/J.
PROCS.2018.07.070

Rodrigues, L.F., Naldi, M.C., Mari, J.F., 2019. Comparing convolutional neural
networks and preprocessing techniques for HEp-2 cell classification in
immunofluorescence images. Comput. Biol. Med. 116, 103542. https://doi.org/
10.1016/j.compbiomed.2019.103542.

Shallu, Mehra, R., 2018. Breast cancer histology images classification: Training from
scratch or transfer learning? ICT Express 4, 247–254. https://doi.org/10.1016/J.
ICTE.2018.10.007

Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale
image recognition, in: 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track Proceedings.
5295
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., Rabinovich, A., 2015. Going deeper with convolutions. Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. https://doi.org/10.1109/CVPR.2015.7298594.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the
inception architecture for computer vision. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. https://doi.
org/10.1109/CVPR.2016.308.

Tharwat, A., Hemedan, A.A., Hassanien, A.E., Gabel, T., 2018. A biometric-based
model for fish species classification. Fish. Res. 204, 324–336. https://doi.org/
10.1016/J.FISHRES.2018.03.008.

Wang, J., Li, S., An, Z., Jiang, X., Qian, W., Ji, S., 2019. Batch-normalized deep neural
networks for achieving fast intelligent fault diagnosis of machines.
Neurocomputing 329, 53–65. https://doi.org/10.1016/j.neucom.2018.10.049.

Yang, Q., Shi, W., Chen, J., Lin, W., 2020. Deep convolution neural network-based
transfer learning method for civil infrastructure crack detection. Autom. Constr.
116, 103199. https://doi.org/10.1016/j.autcon.2020.103199.

https://doi.org/10.1016/J.NEUCOM.2015.10.122
https://doi.org/10.1016/J.NEUCOM.2015.10.122
https://doi.org/10.1016/j.compbiomed.2019.103542
https://doi.org/10.1016/j.compbiomed.2019.103542
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0155
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0155
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0155
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0155
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0160
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0160
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0160
http://refhub.elsevier.com/S1319-1578(21)00130-0/h0160
https://doi.org/10.1016/J.FISHRES.2018.03.008
https://doi.org/10.1016/J.FISHRES.2018.03.008
https://doi.org/10.1016/j.neucom.2018.10.049
https://doi.org/10.1016/j.autcon.2020.103199

	Multi-level residual network VGGNet for fish species classification
	1. Introduction
	2. Related work
	3. Proposed methods
	4. Results and discussions
	5. Conclusion
	Acknowledgment
	References

