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A B S T R A C T   

Detection of a fish’s eye, tail and body is the initial process in the vision system for determining the freshness and 
species of fish, as well as calculating the number of fish automatically in the fishing industry. Classification 
performance of a system is affected by its ability to detect the intact body of a fish or its body parts. The You Only 
Look Once version 4 tiny (Yolov4-tiny) is a lightweight object detector that can detect body parts of a fish with 
fairly good detection accuracy. However, massive siltation of convolution layer in the Yolov4-tiny backbone 
leads to low feature diversity. This research proposes a modification of the Yolov4-tiny architecture to improve 
detection accuracy by enhancing and balancing feature diversity and attaching an extra-branch detector to detect 
small-sized objects. In addition, we propose the use of bottleneck and expansion convolution to reduce 
computational resources usage. Our contributions are enhancing feature diversity using a wing convolution layer 
(WCL), balancing feature diversity using tiny spatial pyramid pooling (Tiny-SPP), reducing computational re
sources of feature pyramid network (FPN) connections using bottleneck and expansion convolution (BEC), and 
detecting small objects using an extra-branch as a third-scale detector. Our experimental results show that the 
proposed model outperforms the original model and other modified Yolov4-tiny models with Precision, Recall, 
AP, and mAP of 97.48%, 93.3%, 94.07%, and 92.38% respectively. The proposed model is smaller in size and 
more efficient in the use of computing resources.   

1. Introduction 

Fish is a highly nutritious dish (Jose et al., 2021), and contains 
proteins, vitamins, and minerals required for human health (Erasmus 
et al., 2021; Prabhakar et al., 2020). The affordable price and freshness 
of fish motivate people to choose fish as a dish (Mitra et al., 2021). The 
fresher the fish, the better the nutritional content. However, recognizing 
the freshness of a fish in a market is a quite difficult for most people. The 
easiest way to check the freshness of the fish is by touching and pressing 
the body to measure its elasticity. Fresh fish is generally more elastic. 
However, this technique causes bacterial contamination that can dam
age the fish and occur food-borne diseases (Hashanuzzaman et al., 
2020). A computer vision application that can classify fish freshness by 
analyzing the visual appearance of fish body parts is a touchless alter
native solution to avoid bacterial contamination (Lalabadi et al., 2020). 

In the commercial fishing industry, estimation of the species and 
quality of fish are used to determine the appropriate breeding system. In 
addition, the number of fish is also an important issue in maintaining the 
condition of fish and environmental quality in the fish breeding 

industry. Counting the number of fish manually can harm fish growth, 
time-consuming, labor-intensive and has a high error probability. The 
adoption of an automated computer vision system can be of great help to 
the commercial fishing industry. In such vision system, the detection of 
fish body parts is an important initial process before further analysis 
such as classification of fish species and quality and the calculation of 
the number of fish can be carried out (Cai et al., 2020; N.S. et al., 2021). 

The detection of fish body parts has been conducted in several 
studies, for example, segmentation of fish gill and eye based on color 
change in several color spaces (Kunjulakshmi et al., 2020), segmenting 
eye and gill based on color degradation of fish eye and gill in several 
color spaces (Lalabadi et al., 2020; Sengar et al., 2018), segmenting fish 
gill using clustering (Dutta et al., 2016), and segmenting fish gill using 
several strategies of image processing (Issac et al., 2017). (Issac et al., 
2017). Furthermore, several segmentation methods to separate intact 
fish from complex backgrounds have been proposed, such as using blob 
analysis (Prados et al., 2017), combination of multiscale deformable 
(Nian et al., 2017), and Hough circle detection (C. Yu et al., 2020). These 
approach are commonly performed by analyzing the intensity, color, 
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and shape of the fish image; which should take into consideration the 
variations in background, color, and lighting. 

Meanwhile, several studies have explored deep learning approaches 
to detect fish and reported better performance than conventional ap
proaches in environments with complex backgrounds (Sung et al., 
2017), cloudy water conditions (Christensen et al., 2018), and in the 
case of detecting dead fish on the water surface (G. Yu et al., 2020). 
Performance improvements in deep learning approaches are generally 
achieved by modifying the architecture, combining the architecture 
with conventional methods and improving data quality. Such im
provements include replacing the backbone of Single Shot MultiBox 
Detector (SSD) using MobileNet instead of VGG-16 (G. Yu et al., 2020), 
replacing the backbone of You Only Look Once version 3 (Yolov3) using 
MobileNet (Cai et al., 2020), enhancing the deep learning framework 
(Alshdaifat et al., 2020), combining Yolo and Gaussian mixture models 
(Jalal et al., 2020), adding a negative class (Christensen et al., 2018), 
and increasing the variety of feature maps generated by the Yolov4-tiny 
backbone using spatial pyramid pooling (SPP) (Prasetyo et al., 2021). 
Yolov4-tiny can trim 91% of the standard Yolov4 model size by com
pressing 23 CSPDarknet layers backbone into three CSPDarknet layers 
and using only two scale detectors (Bochkovskiy et al., 2020) with fairly 
good detection accuracy. In addition, this model has a 2.54% increase in 
mAP in the problem of face-mask detection by adding six convolution 
layers in the backbone (Kumar et al., 2021). Modifying the loss function 
and layer model can also increase recall by 98.8% in badminton shut
tlecock detection (Cao et al., 2021). However, massive siltation of the 
convolution layer in the Yolov4-tiny backbone leads to low feature di
versity. Consequently, the model is poor in detecting small objects such 
as fishtails as can be seen in the low recall. In this research, we propose a 
modification of Yolov4-tiny to improve detection accuracy of fish body 
part and to reduce its computational resource usage. Our contributions 
are as follows:  

• Enhancing feature diversity using Wing Convolutional Layer (WCL) 

Yolov4-tiny is a fast object detector with small-sized model and 
limited performance. It is caused by the lack of feature diversity by 
shallow CSPDarknet. We address such a problem by enhancing the va
riety of the features using WCL, while by separating and paralleling 
convolutional layers to the main backbone. The end feature map of WCL 
is combined with the feature map generated by the main backbones. 
This way improves the detection of intact fish, fish heads, and fishtails.  

• Balancing the diversity of features using Tiny-SPP 

The increase in feature diversity by SPP induces exaggerated features 
as well. We address this problem by reducing the kernel pooling to 
balance the diversity of features.  

• Attaching an extra branch detector to detect fishtails 

The first- and second-scale detectors of Yolov4-tiny are sufficient to 
detect intact fish and fish heads. However, it is insufficient to detect 
fishtails because of the small size. We attach a third-scale detector using 
a feature pyramid network (FPN) by upsampling the second scale’s 
feature map which is then combined with the feature map from the 
previous layer.  

• Reducing computational resources of feature pyramid network (FPN) 

Since the third version, Yolo has used FPN to facilitate multi-scale 
detectors by concatenating current and previous feature maps and 
standard convolution. This method causes excessive computational re
sources. We propose a bottleneck and expansion convolution (BEC) 
using a bottleneck and expansion convolution sequentially. BEC con
volutes the feature maps concatenation using a lower cost than the 

standard convolution.  

• Modification of Yolov4-tiny using WCL, Tiny-SPP, BEC, and an 
additional third-scale detector 

We propose enhancing the Yolov4-tiny model by modifying the 
backbone using WCL, adding Tiny-SPP, replacing the FPN connection 
convolution method using BEC, and attaching a third-scale detector. 
WCL enhances the diversity of features from backbones. Tiny-SPP 
intention balances and prevents the expansion and excessive diversity 
of features. BEC collects relevant features with a low computational cost, 
and the third-scale detector increases the ability to detect small objects, 
particularly fishtails. These enhancements can improve and optimize the 
performance of the Yolov4-tiny model in detecting intact fish, fish 
heads, and fishtails. 

The dataset used in this study is called Fish and Fish Part Detection 
(FFPD). It was developed from the dataset (200 images and two object 
classes) used in the research conducted by Prasetyo et al. (2021) and 
added with 400 images of three object classes, namely heads, tails, and 
intact fish body. Furthermore, the dataset was used to evaluate the 
performance of every module in improving the detection performance. 
The performance of our proposed model was compared to the perfor
mance of other Yolo-based models, namely the original Yolov4-tiny, 
Yolov4-tiny + SPP, Yolov3-tiny, Yolov3, and Yolov4. The experi
mental results show that our proposed model outperformed all the other 
models and achieved the best Precision and Recall. 

The remainder of this paper is arranged as follows. The related work 
utilized in the research is discussed in Section 2. Section 3 describes the 
details of our proposed model. In Section 4, we show and discuss the 
experimental results. Finally, Section 5 presents the conclusion of this 
study and possible future works. 

2. Related work 

The detection and localization of fish or its body parts are necessary 
to support the judgment of fish freshness. Several studies addressed this 
issue using a clustering approach (Dutta et al., 2016), color features 
(Lalabadi et al., 2020), multiscale deformable of the object (Nian et al., 
2017), and Gaussian mixture modeling (Salman et al., 2019). These 
approaches are conventional, and highly dependent on several con
straints, such as color, lighting, and background; thus, the effort is more 
profound than using a deep learning approach. In contrast, deep 
learning is becoming a popular approach for detecting objects due to not 
being influenced by the constraints. Region-based models such as Faster- 
RCNN (Ren et al., 2017), Mask-RCNN (He et al., 2017), and some im
provements using network distillation (Peng et al., 2020), saliency 
guiding (Sharma and Mir, 2019), and shape regression (Haas et al., 
2020) are a few examples of recently proposed deep learning ap
proaches. A common vulnerability faced by RCNN-based models is low- 
speed detection due to a two-stage detection. The other approach uses 
one-stage detection with only one regression process, such as Single Shot 
MultiBox Detector (Liu et al., 2016) and You Only Look Once (Yolo) 
(Redmon et al., 2016). With only one regression process, this approach 
obtains fast speed in detection. 

Yolo is a model used to detect the object in various image conditions 
such as color, lighting, complicated backgrounds, and multiple objects. 
Yolo reaches a more improved model on per updated version, such as 
Yolo version 2 (Yolov2) (Redmon and Farhadi, 2017), Yolov3 (Redmon 
and Farhadi, 2018), and Yolov4 (Bochkovskiy et al., 2020). Several re
searchers carried out further enhancements on Yolo to improve its 
performance, such as strengthening the feature maps using dense con
nections (Huang et al., 2020), using random kernel and double hidden 
layer as the backbone (Yin et al., 2020), replacing the backbone using 
Resnet (Loey et al., 2021), using the third-scale and activating the fifth- 
scale detector to detect extremely small objects (Hu et al., 2021), and 
replacing the backbone with the architecture of MobileNet (G. Yu et al., 
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2020). The combination of Yolo with other models can also solve special 
problems, such as using negative classes to prevent detecting non-fish 
objects (Sung et al., 2017), using gaussian mixture models to detect 
and count fish objects (Jalal et al., 2020), and using a classifier to detect 
and monitor the vehicle in traffic flow (Azimjonov and Özmen, 2021). 

From the explanation above, it can be concluded that detecting fish 
or its body parts using a deep learning approach promises a fast detec
tion model, robust background variations, and small size. The detection 
of intact fish, fish heads, and fishtails promotes a problem since few tail 
targets are detected due to their small size. Therefore, in this study, we 
modified several parts of Yolov4-tiny, such as the backbone, the part 
after the backbone, FPN connections, and the detector. 

3. Proposed methods 

3.1. Wing convolution layer 

Yolov4-tiny model has a small size and fast speed in detection. 
Therefore, it is highly applicable to mobile systems with limited storage 
and computational resources. This small model is represented by a 
shallow convolution layer backbone, in which it utilizes only three 
CSPDarknet and a few convolution layers. In addition, Yolov4-tiny uses 
two-scale detectors for detecting large and medium-sized objects. Due to 
this simple architecture, Yolov4-tiny is extremely fast in detecting ob
jects. However, it has a low detection performance. The principal 
problem is the lack of feature diversity generated by the backbone, 
where the shallow convolution layer is insufficient to generate high- 
level features. SPP expands the diversity of features (Prasetyo et al., 
2021) but may also cause excessive diversity of features that detect non- 
heads and non-tails. 

Increasing the diversity of features is not continually accomplished 
in layer after the backbone. Instead, it can be carried out by creating a 
separating and paralleling branch block to the main backbone, called 
Wing Convolution Layer (WCL). WCL can be designed with arbitrarily 
deeper layers or other deeper architectures as a convolution branch. We 
call it wing because WCL generates other features that the main con
volutional layer backbone may not have. The feature map generated by 
the final layer of WCL is combined with the feature map generated by 
the main backbone. However, adding WCL increases the model size. 
WCL supports the expansion of required features but increases the usage 
of computational resources. This is the trade-off that needs to be taken 
into consideration. 

Suppose WCL performs convolution on several layers, the formulas 
are as follows: 

Fi = Ki × I (1)  

Fwcl =
∑N

i=1
Ki × I (2)  

where I is the convolved image, Ki is the convolution kernel, and Fi is 
feature map at the i-th layer. WCL uses the feature map of the first layer, 
then substitutes I with the feature map of the first layer. Fwcl is the WCL 
feature map obtained after N convolution layers. 

WCL reuses Darknet53 using convolution repetitions of 1, 2, 8, and 8 
times for each block. Regarding the trade-off, the model size and 
computational resources required need to be taken into consideration. 
Therefore, we use a depthwise separable convolution (Howard et al., 
2017). A depthwise separable convolution (DSC) is a convolution 
method that consists of depthwise convolution (DC) and pointwise 
convolution (PC). DC convolves the feature map using a single filter on 
each channel of the feature map, while PC is the same as the standard 
convolution where it convolves the feature map using a 1 × 1 filter. The 
DSC concept achieves similar performances to standard convolution but 
with a significantly lower number of parameters and model size. 
Therefore, we designed WCL using DSC and Darknet53 as the main 

module and architecture. We also use max-pooling to down-sample from 
one block to another. We concatenate both the resulting feature maps at 
the end of the WCL layer and the main backbone then forward it to the 
next stage. The formula to combine the WCL feature map (Fwcl) and the 
main backbone feature map (Fmb) is as follows: Fig. 1. 

Fbb = Fwcl*Fmb (3) 

WCL is designed to generate features that the main backbone may 
not provide. This method is essential in detecting intact fish, fish heads, 
and fishtail, in which the WCL generates complementary features for 
generated features by the main backbone. We employed Darknet53 
using convolution repetitions and DSC to reduce the model size and 
computational cost, as shown in Fig. 2. The smallest module in WCL is 
CBL, consisting of a standard convolution, batch normalization, and 
leaky ReLU. Meanwhile, DCBL is a DSC module that consists of a 
depthwise convolution, a batch normalization, a leaky ReLU, and a CBL 
with a kernel size of 1 × 1. The WCL architecture consists of a CBL, 
several max-pooling, and several DCBL. DCBL is repeated 1, 2, 8, and 8 
times, similar to Darknet53 except for the utilization of DSC as the 
convolution approach. There are 39 convolution layers in WCL called 
Mobile-Darknet-39. 

Yolov4-tiny highlights the advantages of tiny model size. Instead, the 
insertion of WCL into the architecture enriches computational resources’ 
utilization. We use Floating Point Operations Per Second (FLOPS) to 
measure the computational resources as follows: 

FLOPS = 2 × K2 × Fin × Fout × W × H (4)  

where K is the kernel size, Fin is the feature map of the input layer, Fout is 
the feature maps of the output layer, and W and H are the feature map 
output resolutions. Yolov4-tiny requires 6.79 billion FLOPS (BFLOPS) of 
computational resources, while the WCL architecture only requires 
0.2646 BFLOPS. As a result, WCL only accounts for roughly 3.9% of the 
total computational resources of Yolov4-tiny, which is a significantly 
lesser amount. 

3.2. Tiny spatial pyramid pooling (tiny-SPP) 

The limited detection performance of Yolo is addressed using SPP by 
pooling with several kernel sizes and concatenating several multi-scale 
local region features (Huang et al., 2020). This technique improves 
the detection performance indicated by an increase in mAP. However, 
the matter of non-target objects being detected has not been evaluated. 
Researches on the detection of fish head and fishtail show that SPP in
creases the detection of target and non-target objects (Prasetyo et al., 
2021). Therefore, SPP increases the diversity of features with an 
excessive diversity of features instead, indicated by more non-target 
objects being detected. Generally, kernel pooling is used as follows: 

sizeK =
⌈
sizefmap/i

⌉
(4)  

where i = 1,2,3, sizefmap is the size of the feature map, and sizeK is the 
kernel size. The results of pooling using the three kernels are combined 
with the original feature map. We maintain the ability of SPP to increase 
the diversity of features through pooling with several kernel sizes while 
also avoiding excessive feature diversity. To achieve this goal, we pro
pose to reduce the over-pooling of SPP by pooling using only two kernels 
plus a non-pooling feature map. When i = 1, 2 and sizefmap = 13, we 
obtain kernel sizes of 13 × 13 and 7 × 7 called Tiny-SPP. Reducing the 

Fig. 1. Wing Convolution Layer.  
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number of pools does not hinder the expansion of feature diversity and 
avoids excessive diversity of features. 

The difference between Tiny-SPP and SPP is the absence of kernel 
pooling 5, as shown in Fig. 3. In Fig. 3 (a), SPP uses a three-kernel 
pooling and a non-pooling feature map, where both are concatenated 
into a new feature map. On the other hand, Tiny-SPP uses only a two- 
kernel pooling and a non-pooling feature map combined to assemble a 
new feature map, as shown in Fig. 3 (b). 

3.3. Feature map concatenation of FPN using bottleneck and expansion 
convolution 

BEC is a convolution method that linearly squeezes the feature map, 
then re-expands it using linear convolution (Sandler et al., 2018). Ac
cording to empirical investigations, bottleneck convolution squeezes the 
feature map to leave significant features on the low-dimensional feature 
map. Then, the feature map is restored to its intended size by using 
linear expansion convolution. 

Since the third version, called Yolov3 (Redmon and Farhadi, 2018), 
Yolo detects objects using three detectors with different scales. Each 
detects objects in different scale sizes, namely large, medium, and small. 
The large, medium and small sizes are the first, second, and third scales. 
Features of each scale are furthermore connected to other ones using an 
FPN (Lin et al., 2017), as shown in Fig. 4(a). As an example, the second- 
scale detector is employed by combining up-sampled first-scale features 
(26 × 26 × 128) and second-scale features within skip connection (26 ×
26 × 256). The result is a (26 × 26 × 384) feature maps. Unfortunately, 

Yolov4 utilizes standard convolution to combine the features from both 
sources. As a result, the concatenation of the features inflates the 
computational resources. Convolving into 26 × 26 × 256 requires a total 
of 1.196 BFLOPS. We propose a BEC that consists of two-step convolu
tion by convoluting to a smaller size of the feature map, then re- 
convoluting to the intended size, as shown in Fig. 4(b). The standard 
convolution utilizes a kernel of size 3 × 3, while BEC utilizes kernels of 
sizes 1 × 1 and 3 × 3 for bottleneck and expansion convolution, 
respectively. At the same time, the number of channels created by 
bottleneck convolution is 128. 

Convolving the 26 × 26 × 384 feature map into 26 × 26 × 256 using 
BEC requires computational volumes of 0.067 and 0.399 BFLOPS for 
bottleneck and expansion, respectively. The total computational volume 
required is 0.466 BFLOPS, only approximately 39% of the computa
tional volume required by standard convolution. 

3.4. Attaching an extra branch used as a third-scale detector 

Yolov4-tiny compresses the model with shallow convolutions in the 
backbone and employs only large- and medium-sized object detectors 
(no small-sized object detectors). As a result, Yolov4-tiny is extremely 
fast in detection speed and remarkably reliable in detecting large- and 
medium-sized objects. Yolov4-tiny is reliable in detecting intact fish and 
fish heads. However, it is counterproductive in detecting fishtail. The 
principal issue is relying only on large- and medium-sized object de
tectors; hence, it is ineffective in detecting small-sized objects, such as 
fishtails. Therefore, we propose attaching an extra-branch as a third- 

Fig. 2. WCL for the detection of intact fish, fish head, and fishtail.  

Fig. 3. Spatial Pyramid Pooling; (a) Original; (b) Tiny.  

Fig. 4. FPN Connection; (a) Connecting two feature maps; (b) Standard convolution; (c) Bottleneck and Expansion Convolution.  
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scale detector using FPN to solve this problem. 
The third scale is restored using FPN by combining the up-sampled 

second-scale features with the third-scale features from the skip 
connection of the backbone. Subsequently, the integrated feature maps 
are convolved and utilized by the third-scale detector. The third-scale 
detector helps detect fishtails that are small objects and failed to be 
detected using the original Yolov4-tiny model. 

Fig. 5 illustrates the three-scale detectors of Yolo, in which we 
restored the third-scale detector. F1, F2, and F3 are the feature maps of 
the backbone with resolution sizes according to their defined scale, DL 
and DM are the first scale and second scale detectors, respectively. We 
added the DS, the third-scale detector that combines the up-sampled 
second scale features (U3) and the feature map of the skip connection 
of the backbone (F3). 

3.5. Enhancing Yolov4-tiny using WCL, Tiny-SPP, BEC, and a third scale 
detector 

This study proposes an enhancement of the Yolov4-tiny model, 
called WCL-Yolov4-tiny, by modifying the backbone of the model, 
adding Tiny-SPP, and replacing the convolution in the FPN connection 
using BEC, and attaching a third-scale detector. We modified the back
bone by adding WCL as a separate and parallel convolution block, then 
fusing the main backbone with the WCL feature map at the end of the 
backbone. WCL utilizes the feature map from the first convolution of the 
backbone, then convolves it using the several layers of WCL as previ
ously explained. WCL is employed in parallel to the main backbone and 
has a deeper layer than the main backbone. Tiny-SPP supports the 
expansion of feature diversity without causing excessive diversity of 
features and is placed after combining the main backbone with the 
feature map of WCL. 

WCL-Yolov4-tiny utilizes three detectors of different scales. There
fore, our proposed model requires two FPNs to connect the second-scale 
and third-scale detectors. The problem faced by FPN is the usage of 
standard convolution to link between two feature maps. This technique 

causes high computational resources requirement. We solve such a 
problem using BEC to replace the standard convolution and, as a result, 
combining two features map utilizes a low computational resources. 
WCL-Yolov4-tiny further adds a third-scale detector, with a size of 52 ×
52, to enhance the model in detecting small fish body parts, particularly 
the tail. The WCL-Yolov4-tiny architecture is presented in Fig. 6. 

With the support of WCL, Tiny-SPP, BEC, and a third-scale detector, 
the WCL-Yolov4-tiny model generates high with non-excessive diversity 
of features, has a low computational resources usage, and exhibits high 
performance in the detection of intact fish, fish head, and fishtail, as 
proven in the experimental results of this study. 

3.6. The dataset 

We used the FFPD dataset, which contains 600 images added with 
4486 annotations. The annotation consists of 1880 fish heads, 1602 
fishtails, and 1004 intact fish. It can be downloaded from https://data. 
mendeley.com/datasets/pz9jpjtf7f. During the experiment, we divided 
the data into 480 training images (80%) and 120 testing images (20%). 
The training data contains 1492, 1276, and 810 annotations of fish 
heads, fishtails, and intact fish. The testing data includes 388, 326, and 
192 annotations of fish heads, fishtails, and intact fish. The fish head and 
fishtail annotations were created on all visible fish heads and fishtails, 
including those are partially visible in the image due to the overlapping 
with other objects. On the other hand, intact fish annotations were 
performed on fish bodies that were fully visible in the image. 

Examples of images within the FFPD dataset are presented in Fig. 7, 
in which there are three types of problems: single fish, multi fish, and 
complicated fish. The single fish problem, shown in Fig. 7(a), is the task 
of detecting one fish head, one fishtail, and one intact fish in images that 
contains a single fish. The multi fish problem, shown in Fig. 7(b), is the 
task of detecting fish heads, fishtails, and intact fish in images that 
contain several overlapping fishes, in which each fish was fully visible in 
the image. Fig. 7(b) shows three heads and three tails are detected. The 
complicated fish problem, shown in Fig. 7 (c-d), is the task of detecting 
fish heads, fish tails, and intact fish in images that contain several 
overlapping fishes, in which some of the fish bodies were not fully 
visible in the image and even some fish heads and fishtails were also not 
fully visible in the image. Fig. 7(c) shows there are six heads, four tails, 
and two intact fish to detect. Meanwhile, Fig. 7(d) shows there are eight 
heads, four tails, and three intact fish to detect. Those detection prob
lems require the development of reliable detection models that are 
robust towards issues such as object variations, background variations, 
lighting, and clipped objects. 

Fig. 5. The three scale detectors of the proposed model.  

Fig. 6. The WCL-Yolov4-tiny architecture.  
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3.7. Experimental scenarios 

We evaluated our proposed model using 480 images as training data 
and 120 images as test data. Each of our proposed components for 
enhancing the Yolov4-tiny model was tested to measure the improve
ment obtained. The performance of the WCL-Yolov4-tiny model was 
compared to Yolov3, Yolov4, and Yolov4-tiny. In this study, we focus on 
the performance of a model in detecting the target objects, measured 
using Recall and Precision. In addition, Average Precision (AP) was used 
as a general metric in object detection and BFLOPS and megabytes (MB) 
to measure computational volume and model size, respectively. 

4. Results and discussions 

During experiments, we utilized the Darknet framework using the 
configurations shown in Table 1. We utilized tools provided by Google 

Colab, and Yolo parameters used in the experiment, such as max batch, 
steps, input image size, momentum, and learning rate, are shown in the 
table. We recalculated the anchors from the annotated dataset, both 
head, tail, and intact fish objects, as presented in Table 1 for the two- and 
three-scale models. The detection stage uses a confidence threshold of 
0.25 and an NMS threshold of 0.5. 

This section analyzes Recall and Precision to evaluate each model in 
detecting the target and correct objects, respectively. In addition, 
Average Precision (AP) is used as a curve between Precision and Recall 
to analyze the performance of each model. 

4.1. The effect on the performance of each module on fish head detection 

The fish head is the front part of the body, which contains several 
essential organs used to observe the freshness, such as the eyes, gills, and 
even the appearance of the head itself. The Recall results of fish head 

Fig. 7. Sample images of the FFPD dataset. (a). Single fish, (b) Multi fish, (c)-(d) Complicated fish.  
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detection are shown in Fig. 8(a). It can be seen in Fig. 8 (a) that the 
original Yolov4-tiny model exhibited good performance in detecting fish 
heads, achieving a Recall of 75.94% and 75.26% for the training and 
testing sessions, respectively. Adding the BEC and Tiny-SPP modules to 
the Yolov4-tiny model impacts a significant Recall increment in the 
testing session. BEC increased the Recall by 2.32% to 77.58%. Mean
while, Tiny-SPP increased the Recall by 3.86% to 79.12%. WCL 

decreased the Recall by 1.03% in the testing session, which is not a 
significant decrease. Yolov4-tiny with third-scale detector attachment 
obtains a significant increase in Recall, in which the Recall was 
increased by 3.28% to 79.22% in the training session. However, in the 
testing session, the addition of a third-scale detector increased the Recall 
by only 0.51% to 75.77%. It can be concluded that the addition of WCL 
only or a third-scale detector only to the Yolov4-tiny model did not 
significantly increase the performance of Yolov4-tiny in detecting fish 
heads. This result is reasonable because the fish head is not a small 
object. Therefore, attaching a third-scale detector was ineffective in 
improving the performance. The proposed WCL-Yolov4-tiny model 
achieved a significantly higher Recall than the Yolov4-tiny model. The 
WCL-Yolov4-tiny model achieved a Recall of 83.24% and 81.44% in the 
training and testing sessions, respectively. The Recall was increased by 
7.3% and 6.18% in the training session and testing session, respectively, 
compared to the Yolov4-tiny model. This result shows that the addition 
of all the modules to the Yolov4-tiny model significantly improved the 
model’s performance in detecting fish heads based on Recall. 

The Precision results of fish head detection are shown in Fig. 8(b). It 
shows that the original Yolov4-tiny model achieved a Precision of 
93.87% and 92.41% for the training session and testing session, 
respectively. In the training session, four modules positively impacted 
the performance of the Yolov4-tiny model, in which all four modules 
increased the Precision. The Tiny-SPP module increased the Precision by 

Table 1 
Experiment configuration.  

Configuration Parameter 

Environment Google Colab 
GPU Nvidia 
fAcceleration CUDA 11.0, cuDNN 7.6.5 
Library OpenCV 3.2.0 
Max batch 6000 
Steps 4800, 5400 
Image size 416 × 416 
Momentum 0.9 
Learning rate 0.00261 
Model’s anchor with two 

scale 
41, 57, 69, 50, 65, 78, 93, 94, 129, 301, 305, 137 

Model’s anchor with three 
scale 

37, 49, 65, 36, 46, 75, 63, 58, 68, 85, 95, 73, 96, 105, 
127, 303, 294, 137 

Confidence threshold 0.25 
NMS threshold 0.5  

Fig. 8. The performance model. (a), (c), (e) Recall of head, tail, and intact fish, respectively. (b), (d), (e) Precision of head, tail, and intact fish, respectively.  
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the most significant margin; the Precision of the Yolov4-tiny model in 
the training session obtained 95.25%. In the testing session, similar re
sults were exhibited, in which four modules increased the Precision of 
the Yolov4-tiny model. The Tiny-SPP module increased the Precision by 
the most significant margin, increasing the Precision of the Yolov4-tiny 
model in the testing session to 95.05%. The proposed WCL-Yolov4-tiny 
model achieved a significantly higher Precision than the Yolov4-tiny 
model. The WCL-Yolov4-tiny model achieved a Precision of 96.35% 
and 96.34% in the training and testing sessions, respectively. It was 
increased by 2.48% and 3.93%, respectively, compared to the Yolov4- 
tiny model. Therefore, it can be concluded that adding all modules im
pacts the performance of the Yolov4-tiny model in detecting fish heads. 
The model also prevents excessive diversity of features indicated by the 
decrease in false positives. 

4.2. The effect on the performance of each module on tail detection 

The Recall results of fishtail detection are shown in Fig. 8(c). The 
original Yolov4-tiny model exhibited low performance in detecting fish 
heads, with 60.5% and 58.28% for the training and testing sessions, 
respectively. The Yolov4-tiny model with one of the WCL, BEC, and 
Tiny-SPP modules did not significantly increase the Recall in the 
training session, while in the testing session, the most significant 
improvement in Recall was achieved by the BEC addition with a Recall 
of 62.27%. Attaching the third-scale detector to the Yolov4-tiny model 
significantly increased Recall. The Recall increased by 9.95% to 70.45% 
and 9.2% to 67.48% in training and testing sessions, respectively. These 
results indicate that the third-scale detector effectively detects small 
objects such as tails. The proposed WCL-Yolov4-tiny model achieved a 
significantly higher Recall than the Yolov4-tiny model, with 71.47% and 
71.17% in the training and testing sessions, respectively. The Recall was 
increased by 10.97% and 12.89% in the training session and testing 
session, respectively, compared to the Yolov4-tiny model. This result 
shows that adding all modules to the Yolov4-tiny model significantly 
improved the model’s performance in detecting fishtails. 

The Precision results of fishtail detection are shown in Fig. 8(d). The 
original Yolov4-tiny model achieved a Precision of 90.5% and 87.16% 
for the training session and testing session, respectively. In the training 
session, four modules impacted the performance of the Yolov4-tiny 
model, in which four modules increased the Precision. The third-scale 
detector module increased the Precision by the most significant 
margin, increasing the Precision of the Yolov4-tiny model in the training 
session to 93.74%. In the testing session, four modules also impacted the 
performance of the Yolov4-tiny model, in which all modules increased 
the Precision. The Tiny-SPP module increased the Precision by the most 
significant margin, increasing the Precision of the Yolov4-tiny model in 
the testing session to 93.02%. The proposed WCL-Yolov4-tiny model 

achieved a significantly higher Precision than the Yolov4-tiny model. It 
achieved 95.9% and 97.48% in the training and testing sessions, 
respectively. The Precision was increased by 5.4% and 10.32% in the 
training session and testing session, respectively, compared to the 
Yolov4-tiny model. Therefore, it can be concluded that adding all 
modules impacts the performance of the Yolov4-tiny model in detecting 
fishtails. The model also prevents excessive diversity of features indi
cated by the decrease in false positives. The main concern of this study, 
which was the low detection of fishtails, was overcome by the proposed 
WCL-Yolov4-tiny model. 

4.3. The effect on the performance of each module on intact fish detection 

The Recall results of intact fish detection are shown in Fig. 8(e). The 
original Yolov4-tiny model exhibited good performance in detecting 
intact fish, achieving a Recall of 90% and 89.69% for the training and 
testing sessions, respectively. The addition of the WCL and BEC modules 
to the Yolov4-tiny model similarly improved the performance. In the 
training session, the WCL and BEC module increased the Recall by 
2.22% and 2.72%, respectively, while in the testing session, they 
increased the Recall by 1.55%. The addition of the third-scale detector to 
the Yolov4-tiny model slightly decreases performance, whereas it 
decreased the Recall by 0.37% and 3.09% in the training session and 
testing session, respectively. This is because the third-scale detector is 
only effective in detecting small-sized objects such as fishtails and is 
quite ineffective for large-sized objects, such as intact fish. The use of the 
Tiny-SPP module slightly decreased the Recall by 0.99% and 1.03% in 
the training session and testing session, respectively. The WCL-Yolov4- 
tiny model achieved Recall of 93.46% and 93.3%, with an improve
ment of 3.46% and 3.61% in the training and testing sessions, respec
tively, compared to the Yolov4-tiny model. This result shows that adding 
all modules to the Yolov4-tiny model significantly improved the model’s 
performance in detecting intact fish. 

The Precision results of intact fish detection are shown in Fig. 8(f). It 
shows that the original Yolov4-tiny model achieved a Precision of 
85.46% and 80.56% for the training session and testing session, 
respectively. The Yolov4-tiny model with the addition of a single mod
ule among one of the WCL, BEC, and third-scale detector modules did 
not significantly increase the Precision in the training session. In the 
testing session, the addition of the WCL and BEC module to the Yolov4- 
tiny model slightly increased the Precision by 1.38% and 0.26%, 
respectively, while the addition of the third-scale detector module to the 
Yolov4-tiny model decreased the Precision by 0.56%. Meanwhile, add
ing the Tiny-SPP module to the Yolov4-tiny model significantly 
increased the Precision by 3.11% and 4.59% in the training session and 
testing session, respectively. The WCL-Yolov4-tiny model achieved 
Precision of 88.75% and 86.19%, with an improvement of 3.29% and 

Fig. 9. Resource requirements; (a) Computation volume; (b) Model size.  
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5.63% in the training and testing sessions, respectively. Therefore, it can 
be concluded that adding all modules impacts the performance of the 
Yolov4-tiny model in detecting intact fish. The main motivation for this 
improvement was the addition of the Tiny-SPP module; it added di
versity to the fish head features. 

4.4. Computational volume and model size evaluation 

We use BFLOPS to quantify the computational volume and evaluate 
each module in terms of resource utilization. BFLOPS is calculated from 
feature maps’ combined size and resolution and kernel size. The 
computational resource of each model is shown in Fig. 9(a). The addi
tion of the WCL, third-scale detector and Tiny-SPP modules increases the 
computational resource of the Yolov4-tiny model. On the other hand, 
BEC achieves its principal goal of decreasing the computational resource 
of the Yolov4-tiny model while also maintaining its performance with a 
decrement of 0.73%. The proposed WCL-Yolov4-tiny and Yolov4-tiny 
model has a computational volume of 6.904 BFLOPS and 6.79 
BFLOPS, respectively. By considering the trade-off between perfor
mance and computational resources, the WCL-Yolov4-tiny model has a 
slightly larger computational resource. Furthermore, it is significantly 
better performance than the Yolov4-tiny model. Hence, it can be 
concluded that the slight increase in computational resources is worth 
the trade-off. 

We also use model size to evaluate the feasibility of using our pro
posed model in devices with limited storage and computation resources. 
We measured the storage requirement of each model with an input size 
of 416 × 416. It can be seen in Fig. 9(b) that the addition of WCL and the 
third scale detector does not require high additional storage as in BEC. 
The original Yolov4-tiny model only requires 22.4 MB of storage, while 
the addition of Tiny-SPP to the Yolov4-tiny model increases its storage 
requirement to 31.7 MB. Our proposed WCL-Yolov4-tiny model has a 
lower storage requirement of 22.4 MB than the Yolov4-tiny model. This 
shows that our proposed model applies to devices with limited storage 
resources. 

4.5. Performance comparison with the original version 

We compared detection result of the WCL-Yolov4-tiny and the 
original version model on the same testing data. The confusion matrix 
shown in Fig. 10 present four classes, namely head, tail, fish, and 
background. The background class is used to label other objects that are 
mistaken detected. The main diagonal presents the true positive result. 
The detection results in all body parts show that WCL-Yolov4-tiny is 

superior to both head, tail, and fish, with the number of detected objects 
316, 232, and 181, respectively, while the original versions are 292, 
190, 174, respectively. WCL-Yolov4-tiny also reduces the number of 
ground truths that fail to detect. The fourth column shows there are 72 
heads, 93 tails, and 13 fish that fail to detect. The result of tail detection 
shows a significant improvement, from 136 undetected tails decrease to 
93. The number of false-positive objects was also reduced by WCL- 
Yolov4-tiny, where the head, tail, and fish detected are 11, 6, and 29 
objects, respectively, while the original version reached 24, 27, and 42 
objects, respectively. All false positive objects are background or other 
parts that should not be detected. There is almost no misdetection be
tween head, tail, and fish between the two models except for one object. 
WCL-Yolov4-tiny detects one tail object like a head, while the original 
Yolov4-tiny detects one head as a tail. We show the failure case detec
tion of WCL-Yolov4-tiny in the following subsection. 

4.6. Performance evaluation of different models 

The performance of the proposed WCL-Yolov4-tiny model was 
compared to the original Yolov4-tiny model and the Yolov4-tiny model 
with the original SPP (Yolov4-tiny + SPP). The Yolov4-tiny + SPP model 
used more computational resources than the proposed WCL-Yolov4-tiny 
model and the original Yolov4-tiny model, with BFLOPS of 8.03, 6.91, 
and 6.79, respectively. The proposed WCL-Yolov4-tiny model uses 
slightly more computational resources than the Yolov4-tiny model but 
achieves better detection performance. The number of fish head, fish 
tails, and intact fish detected by our proposed model was higher than the 
other two models, with fewer false positives. The mAP with IOU = 0.5 is 
used to evaluate the overall performance of the models. In our problem 
(detecting fish head, fishtail, and intact fish), our proposed model per
formed better than the other two models, where the AP of the proposed 
model for the fish head, fishtail, and intact fish was 94.07%, 90.3%, and 
92.78%, respectively. 

Furthermore, an mAP of 92.38%, achieved by the proposed model, 
was significantly better than the mAP of the others, which was 84.76% 
and 85.47% for the Yolov4-tiny model and the Yolov4-tiny + SPP model, 
respectively. We also compared the performance of the proposed model 
with the Yolov3 and Yolov4 models, which have deeper convolution 
layers in the backbone and several other layers within the model. The 
Yolov3 and Yolov4 models’ performance was better than the WCL- 
Yolov4-tiny model in which the Yolov3, Yolov4, and WCL-Yolov4-tiny 
model obtained a mAP of 96%, 97.43%, and 92.38%, respectively. 
However, the Yolov3 and Yolov4 models uses significantly more 
computational resources, in which the Yolov3, Yolov4, and WCL- 

Fig. 10. Confusion matrix of testing data; (a) Yolov4-tiny original; (b) WCL-Yolov4-tiny.  
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Yolov4-tiny have computational volumes of 65.32 BFLOPS, 59.58 
BFLOPS, 6.91 BFLOPS, respectively. This shows that Yolov3 and Yolov4 
are not applicable in devices with limited storage and computational 
resources. 

We also increased the input size of the proposed model to 512 × 512 
and 608 × 608 during the experiment to determine the impact of 
increasing the input size on the detection performance. Table 2 shows 
that an increase in input size increases the computational resource 
usage. A WCL-Yolov4-tiny model with an input size of 416 × 416, 512 ×
512, and 608 × 608 has a computational volume of 6.91 BFLOPS, 10.46 
BFLOPS, and 14.75 BFLOPS, respectively. The proposed model with an 
input size of 608 × 608 achieved the highest AP of 94.91%, 91.72%, and 
92.7% for the fish head, fishtail, and intact fish, respectively. This is 
slightly better than the AP of the proposed model with an input size of 
416 × 416, which were 94.07%, 90.3%, and 92.78% for fish head, 
fishtail, and intact fish, respectively. The trade-off between computa
tional volume and detection performance when the input size of the 
model is increased is not worth it. Therefore, it can be concluded that the 

proposed WCL-Yolov4-tiny model with an input size of 416 × 416 is the 
most appropriate model to be employed in devices with limited storage 
and computational resource. It is reasonable due to the WCL-Yolov4-tiny 
using a low computational resource with high detection performance. 

4.7. Detection results 

The head, tail and intact fish detection results are presented in 
Fig. 11. WCL-Yolov4-tiny showed satisfying results in detecting objects. 
The first image contains four heads, four tails, and two intact fish; 
Yolov4-tiny detects only one head, one tail, and two intact fish, while 
WCL-Yolov4-tiny detects two heads, three tails, and two intact fishes. 
These results indicate that our proposal has sufficient features diversity 
to detect more tails and heads where more heads and tails are detected 
than the original Yolov4-tiny. Yolov4-tiny detected 8 and 13 objects 
which were true positive. These results also show that WCL-Yolov4-tiny 
can detect more objects with modifications addressed to the original 
Yolov4-tiny. The third image consists of four heads, two tails, and one 

Table 2 
Performance evaluation of different models.  

Model Input Size BFLOPS TP FP AP mAP 

Head Tail Fish Head Tail Fish Head Tail Fish 

Ground Truth –  388 326 194 – – –  –  –  – – 
Yolov4-tiny original 416 × 416  6.79 292 190 174 24 28 42  87.09  77.23  89.96 84.76 
Yolov4-tiny + SPP 416 × 416  8.03 295 206 172 17 29 31  87.87  78.23  90.31 85.47 
WCL-Yolov4-tiny (Proposed) 416 × 416  6.91 316 232 181 12 6 29  94.07  90.3  92.78 92.38              

Yolov3 416x416  65.32 377 299 190 26 20 30  98.01  92.88  97.11 96 
Yolov4 416 × 416  59.58 385 310 188 14 28 24  98.91  96.63  96.74 97.43 
WCL-Yolov4-tiny (Proposed) 512 × 512  10.46 324 235 175 18 19 22  92.8  88.08  94.56 91.82 
WCL-Yolov4-tiny (Proposed) 608 × 608  14.75 325 252 174 15 7 36  94.91  91.72  92.7 93.11  

Fig. 11. Visual comparison between (a) Ground truth and fish detection results using: (b) Yolov4-tiny model; (c) WCL-Yolov4-tiny model.  
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intact fish; Yolov4-tiny and WCL-Yolov4-tiny detect two heads and two 
tails, respectively. In addition, Yolov4-tiny and WCL-Yolov4-tiny also 
detected three non-head and tails; where each detected three and two 
false-positive objects. The results show that WCL-Yolov4-tiny out
performed the original Yolov4-tiny where more and fewer true positives 
and false positives were achieved. With better detection performance, 
where many true objects were detected and fewer false ones were 
avoided, WCL-Yolov4-tiny is appropriate for multifarious organizations. 
Commercial fish packaging companies require a lightweight, fast, and 
high-performance processing machine in sorting the freshness of fish; 
this model supports the requirement in determining the position of fish 
and body parts. The personal users of mobile applications with limited 
storage and computation resources also require a simple and low 
computational resource system to localize mixed fish in one bucket and 
their freshness level. 

The proposed WCL-Yolov4-tiny achieved a significant improvement 
in object detection. The tail detection performance as a small object 
increased true positives while decreasing false positives. False positives 
detected in this case are background or intact fish whose parts are not 
observable, for example, intact fish with head covered by other objects; 
and the model detects them as intact fish, as shown by Fig. 12 (a). One 
fish was detected with 0.56 confidence. Notwithstanding achieving 
fairly good confidence, the object should not be detected due to an 

incomplete body part. Another failed case is Fig. 12 (b), the model 
detected the background as fish with 0.27 confidence. This background 
should not be detected, and we can ignore it by increasing the confi
dence threshold. However, increasing the confidence threshold also 
reduced the true positives achieved. For example, tail and fish with 0.26 
and 0.28 confidence, respectively (Fig. 12(a)), are dismissed if the 
confidence threshold increases to 0.3. Hence, by holding a confidence 
threshold of 0.25, we achieved more true positive objects with fewer 
false-positive ones. Another case of misdetection is Fig. 12(c), where a 
tail with 0.54 confidence should not be detected as a tail. This body part 
is a fin with an appearance looking like a tail. The similarity of the visual 
appearance caused the failure of detection by our proposed model. Some 
detection failures in this model are nevertheless an understandable 
problem due to natural causes and parameter trade-offs used during the 
experiment. The number of failures is slight because only four of the 120 
test images were detected incorrectly. 

5. Conclusion 

This research proposes an object detector model that modifies the 
Yolov4-tiny model, called the WCL-Yolov4-tiny model. The model per
forms better in detecting intact fish, fish eyes, and fishtails. The object 
detected supports the fish freshness classification and is worth applying 

Fig. 12. Failure cased in detection by WCL-Yolov4-tiny model.  
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to devices with limited storage and computational resources. The WCL- 
Yolov4-tiny model uses WCL to expand feature diversity, Tiny-SPP to 
balance feature diversity and avoid excessive diversity of features, BEC 
to reduce computational resource usage, and a third-scale detector to 
detect small-sized objects such as fishtails. The experimental results 
show that the proposed WCL-Yolov4-tiny model achieved a Precision, 
Recall, AP, and mAP of 97.48%, 93.3%, 94.07%, and 92.38%, respec
tively, which were higher than the original Yolov4-tiny model. This 
result indicates that the proposed model can expand and avoid excessive 
diversity of features and better performance in detecting objects with 
different sizes. The proposed model is lightweight, high-performance, 
and requires a low computational resource. Hence, it is applicable in 
mobile devices with limited storage and computational resource in 
detecting fish and body part localization. Therefore, it can be applied to 
personal users and the commercial fishing industry. 

This study found a new model that increases Recall on tail detection 
from the original version by + 12.91% to 71.17%; indicating a signifi
cant improvement. However, this performance was below 80%; the 
subsequent research recommendation such as data augmentation and 
post-processing could be explored to improve the detection 
performance. 
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