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ARTICLEINFO ABSTRACT

Keywords: Detection of a fish's eye, tail and body is the initial process in the vision system for determining the fr and

Y‘Z'_lﬂ\'“-ﬂn}’ ) species of fish, as well as caleulating the number of fish automatically in the fishing industry. Cl tion

‘:Emg convolutional layer performance of a system is affected by its ability to detect the intact body of a fish or its body parts. The You Only
a

Tail and fish detection
Spatial pyramid pooling
Scale detector

Look Once version 4 tiny (Yolov4-tiny) is a lightweight object detectgethat can detect body parts of a fish with
fairly good detection accuracy. However, massive siltation of mnvalinn layer in the Yolov4-tiny backbone
leads to low feature diversity. This research proposes a modification of the Yolov4-tiny architecture to improve
detection accuracy by enhancing and balancing feature diversity and attaching an extra-branch detector to detect
small-sized objects. In addition, we propose the use of bottleneck and expansion convolution to reduce
computational resources usage. Our contributions are enhancing feature diversity using a wing convolution layer
(WCL), balancing feature diversity using tiny spatial pyramid pooling (Tin ), reducing computational re-
sources of feature pyramid network (FPN) connections using bottleneck an nsion convolution (BEC), and
detecting small objects using an extra-branch as a third-scale detector. Our experimental results show that the
proposed model outperforms the original model and other modified Yolov4-tiny models with Precision, Recall,
AP, and mAP of 97.48%, 93.3%, 94.07%, and 92.38% respectively. The proposed model is smaller in size and

more efficient in the use of computing resources.

1. Introduction

Fish imhigh.ly nutritious dish (Jose et al., 2021), and contains
proteins, vitamins, and minerals required for human health (Erasmus
et al., 2021; Prabhakar et al., 2020). The affordable price and freshness
of fish motivate people to choose fish as a dish (Mitra et al., 2021). The
fresher the fish, the better the nutritional content. However, recognizing
the freshness of a fish in a market is a quite difficult for most people. The
easiest way to check the freshness of the fish is by touching and pressing
the body to measure its elasticity. Fresh fish is generally more elastic.
However, this technique causes bacterial contamination that can dam-
age the fish and occur food-borne diseases (Ilashanuzzaman et al.,
2020). A computer vision application that can classify fis hness by
analyzing the visual appearance of fish body parts is a to 55 alter-
native solution to avoid bacterial contamination (Lalabadi et al., 2020).

In the commercial fishing industry, estimation of the species and
quality of fish are used to determine the appropriate breeding system. In
addition, the number of fish is also an importantissue in maintaining the
condition of fish and environmental quality in the fish breeding
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industry. Counting the number of fish manually can harm fish growth,
time-consuming, labor-intensive and has a high error probability. The
adoption of an automated computer vision system can be of great help to
the commercial fishing industry. In such vision system, the detection of
fish body parts is an important initi cess before further analysis
such as classification of fish species uality and the calculation of
the number of fish can be carried out (Cai et al., 2020; N.S. et al., 2021).

The detection of fish body parts has been conducted in several
studies, for example, segmentation of fish gill and eye based on color
change in several color spaces (Kunjulakshmi et al., 2020), segmenting
eye and gill based or degradation of fish eye and gill in several
color spaces (Lalaba 1l., 2020; Sengaret al., 2018), segmenting fish
gill using clustering (Dutta et al., 2016 segmenting fish gill using
several strategies of image processing (Issac et al., 2017). (Issac et al.,
2017). Furthermore, several segmentation methods to separate intact
fish from complex backgrounds have been proposed, such as using blob
analysis (Prados et al., 2017), combination of multiscale deformable
(Mian et al., 2017), and Hough circle detection (C. Yu et al., 2020). These
approach are commonly performed by analyzing the intensity, color,
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and shape of the fish image; which should take into consideration the
variations in background, color, and lighting.

Meanwhile, several studies have explored deep learning approaches
to detect fish and reported better performance than conventional ap-
proaches in environments with complex backgrounds (Sung et al.,
2017}, cloudy water conditions (Christensen et al,, 2018), and in the
case of detecting dead fish on the water surface (G. Yu et al., 2020).
Performance improvements in deep learning approaches are generally
achieved by modifying the architecture, combining the architecture
with conventional methods and improving data quality. Such im-
provements include replacing the backbone of Single Shot MultiBox
Detector (SSD) using MobileNet instead of VGG-16 (G. Yu et al., 2020),
replacing the backbone of You Only Look Once version 3 (Yolov3) using
MobileNet (Cai et al., 2020}, enhancing the deep leaming framework
(Alshdaifat et al., 2020), combining Yolo and Gaussian mixture models
(Jalal et al., 2020), adding a negative class (Christensen et al., 2018),
and increasi e variety of feature maps generated by the Yolov4-tiny
backbone patial pyramid pooling (SPP) (Prasetyo et al.,, 2021).
Yolov4-tiny can trim 91% of the standard Yolov4 model size by com-
pressing 23 CSPDarknet layers backbone into three CSPDarknet layers
and using only two scale detectors (Bochkovskiy et al., 2020) with fairly
good detection accuracy. In addition, this model has a 2.54% increase in
mAP in the problem of face-mask detection by adding six convolution
layers in the backbone (Kumar et al., 2021). Modifying the loss function
and layer model can also increase recall by 98.8% in badminton shut-
tlecock detection (Cao et al., 2021). However, massive siltation of the
convolution layer in the Yolov4-tiny backbone leads to low feature di-
versity. Co ntly, the model is poor in detecting small objects such
as fishtails as be seen in the low recall. In this research, we propose a
modification of Yolov4-tiny to improve detection accuracy of fish body
part and to reduce its computational resource usage. Our contributions
are as follows:

» Enhancing feature diversity using Wing Convolutional Layer (WCL)

Yolov4-tiny is a fast object detector with small-sized model and
limited performance. It is caused by the lack of feature diversity by
shallow CSPDarknet. We address such a problem by enhancing the va-
riety of the features using WCL, while by separating and paralleling
convolutio yers to the main backbone. The end feature map of WCL
is combined with the feature map generated by the main backbones.
This way improves the detection of intact fish, fish heads, and fishtails.

» Balancing the diversity of features using Tiny-SPP

The increase in feature diversity by SPP induces exaggerated features
as well. We address this problem by reducing the kernel pooling to
balance the diversity of features.

s Attaching an extra branch detector to detect fishtails

The first- and second-scale detectors of Yolov4-tiny are sufficient to

t intact fish and fish heads. However, it is insufficient to detect

ils because of the small size. We attach a third-scale detector using

eature pyramid network (FPN) by upsampling the second scale’s

feature map which is then combined with the feature map from the
previous layer.

» Reducing computational resources of feature pyramid network (FPN)

Since the third version, Yolo has used FPN to facilitate multi-scale
detectors by concatenating current and previous feature maps and
standard convolution. This method causes excessive computational re-
sources. We propose a bottleneck and expansion convolution (BEC)
using a bottleneck and expansion convolution sequentially. BEC con-
volutes the feature maps concatenation using a lower cost than the

Computers and Electronics in Agriculture 198 (2022) 107023

standard convolution.

o Modification of Yolov4-tiny using WCL, Tiny-SPP, BEC, and an
additional third-scale detector

We propose enhancing the Yolov4-tiny model by modifying the
backbone using WCL, adding Tiny-SPP, replacing the FPN connection
convolution method using BEC, and attaching a third-scale detector.
WCL enhances the diversity of features from backbones. Tiny-SPP
intention balances and prevents the expansion and excessive diversity
of features. BEC collects relevant features with a low computational ¢
and the third-scale detector increases the ability to detect small objea:
particularly fishtails. These enhancements can improve and optimize the
performance of the Yolov4-tiny model in detecting intact fish, fish
heads, and fishtails.

The dataset used in this study is called Fish and Fish Part Detection
(FFPD). It was developed from the dataset (200 images and two object
classes) used in the research condu by Prasetyo et al. (2021) and
added with 400 images of three objﬁasses, namely heads, tails, and
inta h body. Furthermore, the dataset was used to evaluate the
perf ce of every module in improving the detection performance.
The performance of our proposed model was compared t perfor-
mance of other Yolo-based models, namely the original 4-tiny,
Yolov4-tiny + SPP, Yolov3-tiny, Yolov3, and Yolov4. The experi-
m results show that our proposed model outperformed all the other

and achieved the best Precision and Recall.

The remainder of this paper is arranged as follows. The related work
utilized in the research is discussed in Sccl:ia 2. Section 3 describes the
details of our proposed model. In Section 4, we show and discuss the
experimental results. Finally, Section 5 presents the conclusion of this
study and possible future works.

2. Related work

The detection and localization of fish or its body parts are necessary
to support the judgment of fish freshness. Several studies addressed this

issue using a clustering approach (Dutta et al., 2016), color features
(Lalabadi et al., 2020), multiscale deformable of the object (Nian et al.,
2017), and Gaussian mixture modeling (Salman et al., 2019). These

approaches are conventi and highly dependent on several con-
straints, such as color, lig , and background; thus, the effort is more
profound than using a deep leaming approa contrast, deep
learning is becoming a popular approach for deteH:bjects due to not
being influenced by the constraints. Region-based models such as Faster-
RCNN (Ren et al., 2017), Mask-RCNN (He et al., 2017), and some im-
provements using network distillation (Peng et al, 2020), saliency
guiding (Sharma and Mir, 2019), and shape regression (Ilaas et al.,
2020) are a few examples of recently proposed deep learning ap-
proaches. A common vulnerability faced by RCNN-based mo is low-
speed detection due to a two-stage detection. The other ap uses
one-stage detection with only one regression process, such as Single Shot
MultiBox Detector (Liu et al., 2016) and You Only Look Once (Yolo)
(Redmon et al., 2016). With only one regression process, this approach
obtains fast speed in detection.

Yolo is a model used to detect the object in various image conditions
such as color, lighting, complicated backgrounds, and multiple objects.
Yolo reaches a improved model on per updated version, such as
Yolo version 2 (Yolov2) (Redmon and Farhadi, 2017), Yolov3 (Redmon
and Farhadi, 2018), and Yolov4 (Bochkovskiy et al., 2020). Several re-
searchers carried out further enhancements on Yolo to improve its
perfo ce, such as strengthening the feature maps using dense con-
nectiﬁlun ng et al., 2020), using random kernel and double hidden
layer as the backbone (Vin et al., 2020), replacing the backbone using
Resnet (Loey et al., 2021), using the third-scale and activating the fifth-
scale detector to detect extremely small objects (I1u et al., 2021), and
replacing the backbone with the architecture of MobileNet (G. Yu et al.,
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2020). The combination of Yolo with other models can also solve special
problems, such as using negative classes to prevent detecting non-fish
objects (Sung et al, 2017), using gaussian mixture models to detect
and count fish objects (Jalal et al., 2020), and using a classifier to detect
and monitor the vehicle in traffic flow (Azimjonov and Ozmen, 2021).

From the explanation above, it can be concluded that detecting fish
or its body parts using a deep learning approach promises a fast detec-
tion model, robust background variations, and small size. The detection
of intact fish, fish heads, and fishtails promotes a problem since few tail
targets are detected due to their small size. Therefore, in this study, we
modified several parts of Yolov4-tiny, such as the backbone, the part
after the backbone, FPN connections, and the detector.

3. Proposed methods
3.1 ing convolution layer

Yolov4-tiny model has a small size and fast speed in detection.
Therefore, it is highly applicable to mobile systems with limited storage
and computational resources. This small model is represented by a
shallow convolution layer backbone, in which it utilizes only three
CSPDarknet and a few convolution layers. In addition, Yolov4-tiny uses
two-scale detectors for detecting large and medium-sized objects. Due to
this simple architecture, Yolov4-tiny is extremely fast in detecting ob-
jects. However, it has a low detection performance. The principal
problem is the lack of feature diversity generated by the backbone,
where the shallow convolution layer is insufficient to generate high-
level features. SPP expands the diversity of features (Prasetyo et al.,
2021) but may also cause excessive diversity of features that detect non-
heads and non-tails.

Increasing the diversity of features is not continually accomplished
in layer after the backbone. Instead, it can be carried out by creating a
separating and paralleling branch block to the main backbone, called
Wing Convolution Layer (WCL). WCL can be designed with arbitrarily
deeper layers or other deeper architectur a convolution branch. We
call it wing because WCL generates oth tures that the main con-
volutional layer backbone may not have. feature map generated by
the final layer of WCL is combined with the feature map generated by
the main backbone. However, adding WCL increases the model size.
WCL supports the expansion of required features but increases the usage
of computational resources. This is the trade-off that needs to be taken
into consideration.

Suppose WCL performs convolution on several layers, the formulas
are as follows:

Fi=K: I (1)

N
Fop=Y K xI (2)

where I is the olv image, K; is the convolution kemel, and F; is
feature map at the i 1. WCL uses the feature map of the first layer,
then substitutes [ with the feature map of the first layer. F,,, is the WCL
feature map obtained after N convolution layers.

WCL reuses Darknet53 using convolution repetitions of 1, 2, 8, and 8
times for each block. Regarding the trade-off, the model size and
computati resources required need to be taken into consideration.
Therefore, use a depthwise separable convolution (Howard et al.,
2017). A depthwise separable convolution (DSC) is a convolution
method that consists of depthwise convolution (DC) and pointwise
convolution (PC). DC convolves the feature map using a single filter on
each channel of the feature map, while PC is the same as the standard
convolution where it convolves the feature map using a 1 x 1 filter. The
DSC concept achieves similar performances to standard convolution but
with a significantly lower number of parameters and model size.
Therefore, we designed WCL using DSC and Darknet53 as the main
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Main Backbone
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Fig. 1. Wing Convolution Layer.
module and architecture. We also use max-pooling to down-sample from
one block to another. We concatenate both the resulting feature maps at
the end of the WCL layer and the main backbone then forward it to the
next stage. The formula to combine the WCL feature map (F,.) and the
main backbone feature map (Fyp) is as follows: Fig. 1.

Foi = Fua®Foup (3)

WCL is designed to generate features that the main backbone may
not provide. This method is essential in detecting intact fish, fish heads,
and fishtail, in which the WCL generates complementary features for
generated features by the main backbone. We employed Darknet53
using convolution repetitions DSC to reduce the model size and
computational cost, as shown i . 2. The smallest module in WCL is
CBL, consisting of a standard convolution, batch normalization, and
leaky RelU. Meanwhile, DCBL is a DSC module that consists of a
depthwise convolution, a batch normalization, a leaky ReLU, and a CBL
with a kernel size of 1 = 1. The WCL architecture consists of a CBL,
several max-pooling, and several DCBL. DCBL is repeated 1, 2, 8, and 8
times, similar to Darknet53 except for the utilization of DSC as the
convolution approach. There are 39 convolution layers in WCL called
Mobile-Darknet-39.

Yolov4-tiny highli the advantages of tiny model size. Instead, the
insertion of WCL int: architecture enriches computational resources’
utilization. We use Floating Point Operations Per Second (FLOPS) to
measure the computational resources as follows:

FLOPS, =2 % K* % Fyy % Fou % W x H “)

2]
where K is the kemel size, F;, is the featu.raap of the input layer, F,, is
the feature maps of the output layer, and W and H are the feature map
output resolutions. Yolov4-tiny requires 6.79 billion FLOPS (BFLOPS) of
computational resources, while the WCL architecture only requires
0.2646 BFLOPS. As a result, WCL only accounts for roughly 3.9% of the
total computational resources of Yolov4-tiny, which is a significantly
lesser amount.

3.2. Tiny spatial pyramid pooling (tiny-SPP)

The limited detection performance of Yolo is addressed using SPP by
pooling with several kernel sizes and concatenating several multi-scale
local region features (IHuang et al, 2020). This technique improves
the detection performance indicated by an increase in mAP. However,
the matter of non-target objects being detected has not been evaluated.
Researches on the detection of fish head and fishtail show that SPP in-
creases the detection of target and non-target objects (Prasetyo et al.,
2021). Therefore, SPP increases the diversity of features with an
excessive diversity of features instead, indicated by more non-target
objects being detected. Generally, kernel pooling is used as follows:

M€y = |SIZ€hmn /T (4)
[ g | -|

ﬁr& i =1.2,3, sizefy,, is the size of the feature map, and sizey is the

el size. The results of pooling using the three kemels are combined
with the original feature map. We maintain the ability of SPP to increase
the diversity of features through pooling with several kernel sizes while
also avoiding excessive feature diversity. To achieve this goal, we pro-
pose to reduce the over-pooling of SPP by pooling using only two kernels
plus a non-pooling feature map. When i = 1, 2 and sizemg = 13, we
obtain kernel sizes of 13 x 13 and 7 x 7 called Tiny-SPP. Reducing the
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(a)

Fig. 3. Spatial Pyramid Pooling; (a) Original; (b) Tiny.
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Fig. 4. FPN Connection; (a) Connecting two feature maps; (b) Standard convolution; (¢) Bottleneck and Expansion Convolution.

number of pools does not hinder the expansion of feature diversity and
avoids excessive diversity of features.

The difference between Tiny-SPP and SPP is the absence of kernel
pooling 5, as shown in Fig. 3. In Fig. 3 (a), SPP uses a three-kernel
pooling and a non-pooling feature map, where both are concatenated
into a new feature map. On the other hand, Tiny-SPP uses only a two-
kemel pooling and a non-pooling feature map combined to assemble a
new feature map, as shown in Fig. 3 (b).

3.3. Feature map concatenation of FPN using bottleneck and expansion
convolution

BEC is a convolution method that linearly squeezes the feature map,
then re-expands it using linear convolution (Sandler et al., 2018). Ac-
cording to empirical investigations, bottleneck convolution squ the
feature map to leave significant features on the low-dimensional feature
map. Th e feature map is restored to its intended size by using
linear ex] ion convolution.

Since the third version, called Yolov3 (Redmon and Farhadi, 2018),
Yolo detects objects using three detectors with different scales. Each
detects objects in different scale sizes, namely large, medium, and small.
The large, medium and small sizes are the first, second, and third scales.
Features of each scale are furthermore connected to other ones using an
FPN (Lin et al., 2017), as shown in Fig. 4(a). As an example, the second-
scale detector is employed by combining up-sampled first-scale features
(26 x 26 x 128) and second-scale features within skip connection (26 x
26 x 256). The result isa (26 x 26 x 384) feature maps. Unfortunately,

Yolov4 utilizes standard convolution to combine the features from both
sources. As a result, the concatenation of the features inflates the
computational resources. Convolving into 26 x 26 x 256 requiresa total
of 1.196 BFLOPS. We propose a BE t consists of two-step convolu-
tion by convoluting to a smaller size of the feature map, then re-
convoluting to the intended size, as shown in Fig. 4(b). The standard
convolution utili kernel of size 3 % 3, while BEC utilizes kemels of
sizes 1 x 1 an'ﬁx 3 for bottleneck and expansion convolution,
respectively. At the same time, the number of channels created by
bottleneck convolution is 128.

Convolving the 26 x 26 » 384 feature map into 26 x 26 x 256 using
BEC requires computational volumes of 0.067 and 0.399 BFLOPS for
bottleneck and expansion, respectively. The total computational volume
required is 0.466 BFLOPS, only approximately 39% of the computa-
tional volume required by standard convolution.

3.4. Attaching an extra branch used as a third-scale detector

Yolov4-tiny compresses the model with shallow convolutions in the
backbone and employs only large- and medium-sized object detectors
(no small-sized object detectors). As a result, Yolov4-tiny is extremely
fast in detection speed and remarkably reliable in detecting large- and
medium-sized objects. Yolov4-tiny is reliable in detecting intact fish and
fish heads. However, it is counterproductive in detecting fishtail. The
principal issue is relying only on large- and medium-sized object de-
tectors; hence, it is ineffective in detecting small-sized objects, such as
fishtails. Therefore, we propose attaching an extra-branch as a third-
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Fig. 5. The three scale detectors of the proposed model.

scale detector using FPN to solve this problem.

The third scale is restored using FPN by combining the up-sampled
second-scale features with the third-scale features from the skip
connection of the backbone. Subsequently, the integrated feature maps
are convolved and utilized by the third-scale detector. The third-scale
detector helps detect fishtails that are small objects and failed to be
detected using the original Yolov4-tiny model.

Fig. 5 illustrates the three-scale detectors of Yolo, in which we
restored the third-scale detector. Fy, Fy, and Fy are the feature maps of
the backbone with resolution sizes according to their defined scale, D
and Dy are the first scale and second scale detectors, respectively. We
added the Dg, the third-scale detector that combines the up-sampled
second scale features (Us) and the feature map of the skip connection
of the backbone (F3).

3.5. Enhancing Yolov4-tiny using WCL, Tiny-SPP, BEC, and a third scale
detector

This study proposes an enhancement of the Yolov4-tiny model,
called WCL-Yolov4-tiny, by modifying the backbone of the model,
adding Tiny-SPP, and replacing the convolution in the FPN connection
using BEC, and attaching a third-scale detector. We modified the back-
bone by adding WCL eparate and parallel convolution block, then
fusing the main back with the WCL feature map at the end of the
backbone. WCL utilizes the feature map from the first convolution of the
backbone, then convolves it using the several layers of WCL as previ-
ously explained. WCL is employed in parallel to the main backbone and
has a deeper layer than the main backbone. Tiny-SPP supports the
expansion of feature diversity without causing excessive diversity of
features and is placed after combining the main backbone with the
feature map of WCL.

WCL-Yolov4-tiny utilizes three detectors of different scales. There-
fore, our proposed model requires two FPNs to connect the second-scale
and third-scale detectors. The problem faced by FPN is the usage of
standard convolution to link between two feature maps. This technique
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causes high computational resources requirement. We solve such a
problem using BEC to replace the standard convolution and, as a result,
combining two features map utilizes a low computational resources.
WCL-Yolov4-tiny further adds a third-scale detector, with a size of 52 x
52, to enhance the model in detecting small fish body parts, particularly
the tail. The WCL-Yolov4-tiny architecture is presented in Fig. 6.

With the support of WCL, Tiny-SPP, BEC, and a third-scale detector,
the WCL-Yolov4-tiny model generates high with non-excessive diversity
of features, has a low computational resources usage, and exhibits high
performance in the detection of intact fish, fish head, and fishtail, as
proven in the experimental results of this study.

3.6. The dataset

We used the FFPD dataset, which contains 600 u‘las added with
4486 annotations. The annotation consists of 1880 fish h , 1602
fishtails, and 1004 intact fish. It can be downloaded from hﬁfdﬂtﬂ.
mendeley.com/datasets,/pz9jpjtf7f. During the experiment, we divided
the data into 480 training images (80%) and 120 testing images (20%).
The training data contains 1492, 1276, and 810 annotations of fish
heads, fishtails, and intact fish. The testing data includes 388, 326, and
192 annotations of fish heads, fishtails, and intact fish. The fish head and
fishtail annotations were created on all visible fish heads and fishtails,
including those are partially visible in the image due to the overlapping
with other objects. On the other hand, intact fish annotations were
performed on fish bodies that were fully visible in the image.

Examples of images within the FFPD dataset are presented in Fig. 7,
in which there are three types of problems: single fish, multi fish, and
complicated fish. The single fish problem, shown in Fig. 7(a), is the task
of detecting one fish head, one fishtail, and one intact fish in images that
contains a single fish. The multi fish problem, shown in Fig. 7(b), is the
task of detecting fish heads, fishtails, and intact fish in images that
contain several overlappin; es, in which each fish was fully visible in
the image. Fig. 7(b) show heads and three tails are detected. The
complicated fish problem, shown in Fig. 7 (c-d), is the task of detecting
fish heads, fish tails, and intact fish in images that contain several
overlapping fishes, in which some of the fish bodies were not fully
visible in the image and even some fish heads and fishtails were also not
fully visible in the image. Fig. 7(c) shows there are six heads, four tails,
and two intact fish to detect. Meanwhile, Fig. 7(d) shows there are eight
heads, four tails, and three intact fish to detect. Those detection prob-
lems require the development of reliable detection models that are
robust towards issues such as object variations, background variations,
lighting, and clipped objects.
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Fig. 6. The WCL-Yolov4-tiny architecture.
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Fig. 7. Sample images of the FFPD dataset. (a). Single fish, (b) Multi fish, (c)-(d) Complicated fish.

3.7. Experimental scenarios .
29

We eva our proposed model using 480 images as training data
and 120 i test data. Each of our proposed components for
enhancing the 4-tiny model was tested easure the improve-

ment obtained. The performance of the W ov4-tiny model was
compared to Yolov3, Yolov4, and Yolov4-tiny. In this study, we foc

the performance of a model in detecting the target objects, mea
using Recall and Precision. In addition, Average Precision (AP) was used
as a general metric in object detection and BFLOPS and megabytes (MB)
to measure computational volume and model size, respectively.

4. Results and discussions

During experiments, we utilized the Darknet framework using the
configurations shown in Table 1, We utilized tools provided by Google

Colab, and Yolo parameters used in the experiment, such as max batch,
steps, input image size, momentum, and learning rate, are shown in the
table. We recalculated the anchors from the annotated dataset, both
head, tail, and intact fish objects, as presented in Table 1 for the two-and
three-scale models. The detection stage uses a confidence threshold of
0.25 and an NMS threshold of 0.5.

is section analyzes Recall and Precision to evgluate each model in
d:ltlisng the target and correct objects, res y. In addition,
&verage Precision (AP) is used as a curve between Precision and Recall
to analyze the performance of each model.

4.1. The effect on the performance of each module on fish head detection

The fish head is the front part of the body, which contains several
essential organs used to observe the freshness, such as the eyes, gills, and
even the appearance of the head itself. The Recall results of fish head
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Table 1
Experiment configuration.
Configuration Parameter
Environment e Colab
GFPU
fAcceleration CUDA 11.0, cuDNN 7.6.5
Library OpenCV 3.2.0
Max batch &000
Steps 4800, 5400
Image size 416 » 416
Momentum 09
Learning rate 0.00261
Model’s anchor with two 41,57, 69, 50, 65, 78, 93, 94, 129, 301, 305, 137
scale
Model's anchor with three 37, 49, 65, 36, 46, 75, 63, 58, 68, 85, 95, 73, 96, 105,
scale 127, 303, 294, 137
Confidence threshold 0.25
NMS threshold 0.5

2
detectiong shown in Fig. 8(a). It can be seen in Fig. 8 (a) that the
original Yolov4-tiny model exhibited good performance in detecting fish
heads, achieving a Recall of 75.94% and 75.26% for the training and
testing sessions, respectively. Adding the BEC and Tiny-SPP modules to
the Yolov4-tiny model impacts a significant Recall increment in the
testing session. BEC increased the Recall by 2.32% to 77.58%. Mean-
while, Tiny-SPP increased the Recall by 3.86% to 79.12%. WCL
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decreased the Recall by 1.03% in the testing session, which is not a
significant decrease. Yolov4-tiny with third-scale detector attachment
obtains a significant increase in Recall, in which the Recall was
increased by 3.28% to 79.22% in the training session. However, in the
testing session, the ad dition of a third-scale detector increased the Recall
by only 0.51% to 75.77%. It can be concluded that the addition of WCL
only or a third-scale detector only to the Yolov4-tiny model did not
significantly increase the performance of Yolov4-tiny in detecting fish
heads. This result is reasonable because the fish head is not a small
object. Therefore, attaching a third-scale gdetector was ineffective in
improving the performance. The proposgel WCL-Yolov4-tiny model
achieved a significantly higher Recall than the Yolov4-tiny model. The
WCL-Yolov4-tiny model achieved a Recall of 83.24% and 81.44% in the
ining and testing sessions, respectively. The Recall was increased by
% and 6.18% in the training session and testing session, respectively,
compared to the Y@&3v4-tiny model. This result shows that the addition
of all the modules to the Yolov4-tiny model significantly improved the
model's performance in d. ing fish heads based on Recall.
The Precision results head detection are shown in Fig. 8(b). It
shows that the original Yolov4-tiny model achieved a Precision of
87% and 92.41% for the training session and testing session,
pectively. In the training session, four modules positively impacted
the performance of the Yolov4-tiny model, in which all four modules
increased the Precision. The Tiny-SPP module increased the Precision by
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Fig. 8. The performance model. (a), (c), (e) Recall of head, tail, and intact fish, respectively. (b), (d), (e) Precision of head, tail, and intact fish, respectively.




E Prasetyo et al.

80

154

7.0 4

BFLOPS

6.5 4

6.0 4

5.5 4

Model

E +3rd Scale
mm +Tiny SPP
mmm Proposed (+WCL+BEC+3rd Scale+Tiny SPP)

(a)

mmm Criginal
. +WCL
mm +BEC

Computers and Electronics in Agriculture 198 (2022) 107023

B0

25 31.7
E 30.0
N 215
2
§ 5.0
= 25 24 229 229 21

204
200
Model

= Original == +3rd Scale
mm +WCL mm +Tiny SPP
mmm +BEC mmm Proposed (+WCL+BEC+3rd Scale+Tiny SPP)

(b)

Fig. 9. Resource requirements; (a) Computation volume; (b) Model size.

the most significant margin; the Precision of the Yolov4-tiny model j
the training session obtained 95.25%. In the testing session, similar

sults were exhibited, in which four modules increased the Precision of

the Yolov4-tiny model. The Tiny-SPP m@slile increased the ision by
the most significant margin, increasing the Precision of the v4-tiny
model in the testing session to 95.05%. The proposed Yolov4-tiny

model achieved a significantly higher Precision than the Yolov4-tiny
model. The WCL-Yolov4-tiny model achieved a Precision of 96.35%
and 96.34% in the training and testing sessions, respectively. It was
incre; by 2.48% and 3.93%, respectively, compared to the Yolov4-
tiny 1. Therefore, it can be concluded that adding all modules im-
pacts the performance of the Yolov4-tiny model in detecting fish heads.
The model also prevents excessive diversity of features indicated by the
decrease in false positives. .
2
4.2. The effect on the performance of each module on tail detection

The Recall results of fishtail detection are shown in Fig. 8(c). The
original Yolov4-tiny model exhibited low performance in detecting fish
heads, with 60.5% and 58.28% for the training and testing sessions,
respectively. The Yolov4-tiny model with one of the WCL, BEC, and
Tiny-SPP modules did not significantly increase the Recall in the
training session, while in the testing sessi the most significant
improvement in Recall was achieved by the BfE} addition with a Recall
of 62.27%. Attaching the third-scale detector to the Yolov4-tiny model
significantly increased Recall. The Recall increased by 9.95% to 70.45%
and 9.2% to 67.48% in training and testing sessions, respectively. These
results indicate that the third-scale detector effectively detects small
objects such as tails. The proposed WCL-Yolov4-tiny model achieved a
significantly higher Recall than the Yolov4-tiny model, with 71.47% and
71.17% in the training and testing sessions, respectively. The Recall was
increased by 10.97%&@ad 12.89% in the training session and testing
session, respectively, compared e Yolov4-tiny model. This result
shows that adding all modules to the Yolov4-tiny model significantly
improved the model’s performance in detecting fishtails.

The Precision results of fishtail detection are shown in Fig. 8(d). The
original Yolov4-tiny model achieyed a Precision of 90.5% and 87.16%
for the training session and testin&ss ion, respectively. In the training
session, four modules impacted the performance of the Yolov4-tiny
model, in which four modules increased the Precision. The third-scale
detector module reased the Precision by the most significant
margin, increasing the Precision of the Yolov4-tiny model in the trai
session to 93.74%. In the testing session, four modules also impacted the
performance of the Yolov4-ti odel, in which all modules increased
the Precision. The Tile—SPP:Ee increased the Pregision by the most
significant margin, increasing the Precision of the Yﬁﬁn}r model in
the testing session to 93.02%. The proposed WCL-Yolov4-tiny model

achieved a significantly higher Precision than the Yolov4-tiny model. It
achieved 95.9% and 97.48% in the training and testing sessi
respectively. The Precision was increased by 5.4% and 10.32% in
training session testing session, respectively, compared to the
Yolov4-tiny m erefore, it can be concluded that adding all
modules impacts the performance of the Yolov4-tiny model in detecting
fishtails. The model also prevents excessive diversity of features indi-
cated by the decrease in false positives. The main concern of this study,
which was the low detection of fishtails, was overcome by the proposed
WCL-Yolov4-tiny model. .

2

4.3. The effect on the performance of each module on intact fish detection

The Recall results of intact fish detection are sh in Fig. 8(e). The
original Yolov4-tiny model exhibited good perfo%ce in detecting
intact fish, achieving a Recall of 90% and 89.69% for the training and

g sessions, respectively. The addition of the WCL and BEC modules
to the Yolov4-tiny model similarly improved the performance. In the
training session, the WCL and BEC module increased the Recall by
2.22% and 2.72%, respectively, while in the testing session, they
increased the Recall by 1.55%. The addition of the third-scale detector to
the Yolov4-tiny model slightly decreases performance, whereas it
decreased the Recall by 0.37% and 3.09% in the training session and
testing session, respectively. This is because the third-scale detector is
only effective in detecting small-sized objects such as fishtails and is
quite ineffective for large-sized objects, such as intact fish. The use of the
Tiny-SPP module slightly decreased the Recall by 0.99% and 1.03% in
the training session and testing session, respectively. The WCL-Yolov4-
tiny el achieved Recall of 93.46% and 93.3%, with an improve-
mentrﬁ. and 3.61% in the training and testing sessions, respec-
tively, comy to the Yolov4-tiny model. This result shows that adding
all modules to the Yolov4-tiny model significantly improved the model's
performance in detecting intact fish.

The Precision results of intact fish detection are shown in Fig. 8(f). It
shows that original Yolov4-tiny model achieved a Precision of
85.46% and|530.56% for the training session and testing session,
respectively. The Yolov4-tiny model with the addition of a single mod-
ule among one of the WCL, BEC, and third-scale detector modules did
not significantly increase the Precision in the training session. In the
testing session, the addition of the WCL and BEC module to the Yolov4-
tiny model slightly increased the Precision by 1.38% and 0.26%,
respectively, while the addition of the third-scale detector module to the
Yolov4-tiny model decreased the Precision by 0.56%. Meanwhile, add-
ing the Tiny-SPP module to the Yolov4-tingy model significantly
increased the Precision by 3.11% and 4.59% in the training session and
testing session, respectively. The WCL-Yolov4-tiny model achieved
Precision of 88.75% and 86.19%, with an improvement of 3.29% and
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Fig. 10. Confusion matrix of testing data; (a) Yolov4-tiny original; (b) WCL-Yolov4-tiny.

37
5.63% in!tlaining and testing sessions, respem@. Therefore, it can
be concluded that adding all modules impacts the performance of the
Yolov4-tiny model in detecting intact fish. The main motivation for this
improvement was the addition of the Tiny-SPP module; it added di-
versity to the fish head features.

4.4. Computational volume and model size evaluation

We use BFLOPS to quantify the computational volume and evaluate
each module in terms of resource utilization. BFLOPS is calculated from
feature maps’ combined size and resolution and kernel size. The
computational resource of each model is shown in Fig. 9(a). The addi-
tion of the WCL, third-scale detector and Tiny-SPP modules increases the
computational resource of the Yolov4-tiny model. On the other hand,
BEC achieves its principal goal of decreasing the computational resource
of the Yolov4-tiny model while also maintaining its performance with a
decrement of 0.73%. The proposed WCL-Yolov4-tiny and Yolov4-tiny
model has a computational volume of 6.904 BFLOPS and 6.79
BFLOPS, respectively. By considering the trade-off between perfor-
mance and computational resources, the WCL-Yolov4-tiny model has a
slightly larger computational resource. Furthermore, it is significantly
better performance than the Yolov4-tiny model. Hence, it can be
concluded that the slight increase in computational resources is worth
the trade-off.

We also use model size to evaluate the feasibility of using our pro-
posed model ip devices with limited storage and computation resources.
We measunedﬁtorage requirement of each model with an input size
of 416 x 416. It can be seen in Fig. 9(b) that the addition of WCL and the
third scale detector does not require high additional storage as in BEC.
The original Yolov4-tiny model only requires 22.4 MB of storage, while
the addition of Tiny-SPP to the Yolov4-tiny m increases its storage
requirement to 31.7 MB. Our proposed WCL- 4-tiny model has a
lower storage requirement of 22.4 MB than the Yolov4-tiny model. This
shows that our proposed model applies to devices with limited storage
resources.

4.5. Performance comparison with the griginal version

We compared detection result of the WCL-Yolov4-tiny and the
original version model on the same testing data. The confusion matrix
shown in Fig. 10 present four classes, namely head, tail, fish, and
background. The background class is used to label other objects that are
mistaken detected. The main diagonal presents the true positive result.
The detection results in all body parts show that WCL-Yolov4-tiny is

superior to both head, tail, and fish, with the number of detected objects
316, 232, and 181, respectively, while the original versions are 292,
190, 174, respectively. WCL-Yolov4-tiny also reduces the number of
ground truths that fail to detect. The fourth column shows there are 72
heads, 93 tails, and 13 fish that fail to detect. The result of tail detection
shows a significant improvement, from 136 undetected tails decrease to
93. The number of false-positive objects was also reduced by WCL-
Yolov4-tiny, where the head, tail, and fish detected are 11, 6, and 29
objects, respectively, while the original version reached 24, 27, and 42
objects, respectively. All false positive objects are background or other
parts that should not be detected. There is almost no misdetection be-
tween head, tail, and fish between the two models except for one object.
WCL-Yolov4-tiny detects one tail object like a head, while the original
Yolov4-tiny detects one head as a tail. We show the failure case detec-
tion of WCL-Yolov4-tiny in the following subsection.

4.6, ‘ormance evaluation of different models

The perfcn:nee the proposed WCL-Yolow4-tiny model was
compared to the origifell Yolov4-tiny model and the Yolov4-tiny model
with the criginal SPP (Yolov4-tiny + SPP). The Yolov4-tiny ﬁp model
used more computational resources than the proposed WCL-Yolov4-tiny
model and the original Yolov4-tiny model, with BFLOPS of 8.03, 6.91,
and 6.79, respectively. The proposed WCL-Yolov4-tiny model uses
slightly more computational resources than the Yolov4-tiny model but
achieves better detection performance. The number of fish head, fi
tails, and intact fish detected by our proposed model was higher than
other two models, with fewer false positives. The mAP with IOU = 0.5 is
used to evaluate the overall performance of the models. In our problem
(detecting fish head, fishtail, and intact fish), our proposed model per-
formed better than the other two models, where the AP of the proposed
model for the fish head, fishtail, and intact fish wa 07%, 90.3%, and
92.78%, respectively. sﬁ

Furthermo mAP of 92.38%, achieved by the proposed model,
was signific er than the mAP of the others, which was 84.76%
and 85.47 % e Yolov4-tiny model and the Yolov4-tiny + SPP model,

respectively. We also compared the performance of the proposed model
with the Yolov3 and Yolov4 models, which have deeper convolution
layers in the backbone and several other layers within the model. The
Yolov3 and Yolov4 models’ performance was better than the WCL-
Yolov4-tiny model in which the Yolov3, Yolov4, and WCL-Yolov4-tiny
model obtained a mAP of 96%, 97.43%, and 92.38%, respectively.
However, the Yolov3 and Yolov4 models uses significantly more
computational resources, in which the Yolov3, Yolov4, and WCL-
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Table 2

Performance evaluation of different models.
Model Input Size BFLOPS TP FP AP mAP

Head Tail Fish Head Tail Fish Head Tail Fish

Ground Truth - 388 326 194 - - - - - - -
Yolové4-tiny original 416 = 416 6.79 262 150 174 24 28 42 B7.09 77.23 B9.96 B4.76
Yolov4-tiny + SPP 416 = 416 B.03 295 206 172 17 29 31 B7.B7 78.23 90.31 B5.47
WCL-Y olov4-tiny (Proposed) 416 = 416 6.91 316 232 181 12 6 29 94.07 Q0.3 9278 92.38
Yolovd 41 6x416 65.32 77 299 190 26 20 30 G8.01 92.88 97.11 96
Yolovd 416 = 416 59.58 385 310 188 14 28 24 98.91 96.63 96.74 97.43
WCL-Yolové4-tiny {Proposed) 512 = 512 10.46 324 235 175 18 19 22 92.8 B8.08 94.56 91.82
WCL-Yolov4-tiny {Proposed) 608 = 608 14.75 325 252 174 15 7 36 94,91 91.72 927 93.11

(b)

(©

Fig. 11. Visual comparison between (a) Ground truth and fish detection results using: (b) Yolov4-tiny model; (¢) WCL-Yolov4-tiny model.

Yolov4-tiny have computational volumes of 65.32 BFLOPS, 59.58
BFLOPS, 6.91 BFLOPS, respectively. This shows that Yolov3 and Yolov4
are not applicable in devices with limited storage and computational
resources.

We also increased the input size of the m}sed model to 512 x 512
and 608 x 608 during the experiment to determine the impact of
increasing the input size on the detection performance. Table 2 shows
that an increase in input size increases the computational resource
usage. A WCL-Yolov4-tiny model with an i size of 416 x 416, 512 x
512, and 608 x 608 has a computational e of 6.91 BFLOPS, 10.46
BFLOPS, and 14.75 BFLOPS, respectively. The proposed model with an
input size of 608 = 608 achj the highest AP of 94.91%, 91.72%, and
92.7% for the fish head, il, and intact fish, respectively. This is
slightly better than the AP of the proposed model with an input size of
416 = 416, which were 94.07%, 90.3%, and 9 2 for fish head,
fishtail, and intact fish, respectively. The een computa-
tional volume and detection performance the input size of the
model is increased is not worth it. Therefore, it can be concluded that the

10

4
proposed WCL-Yolov4-tiny model with an input size of 416 x 416 is the
most appropriate model to be employed in devices with limited storage
and computational resource. It is reasonable due to the WCL-Yolov4-tiny
using a low computational resource with high detection performance.

4.7. Detection results

The head, tail and intact fish detection results are presented in
Fig. 11. WCL-Yolov4-tiny showed satisfying results in detecting objects.
The first image contains four heads, four tails, and two intact fish;
Yolov4-tiny detects only one head, one tail, and two intact fish, while
WCL-Yolov4-tiny detects two heads, three tails, and two intact fishes.
These results indicate that our proposal has sufficient features diversity
to detect more tails and heads where more heads and tails are detected
than the original Yolov4-tiny. Yolov4-tiny detected 8 and 13 objects
which were true positive. These results also show that WCL-Yolov4-tiny
can detect more objects with modifications addressed to the original
Yolov4-tiny. The third image consists of four heads, two tails, and one
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Fig. 12. Failure cased in detection by WCL-Yolov4-tiny model.

intact fish; Yolov4-tiny and WCL-Yolov4-tiny detect two heads and two
tails, respectively. In addition, Yolov4-tiny and WCL-Yolov4-tiny also
detected three non-head and tails; where each detected three and two
false-positive objects. The results show that WCL-Yolov4-tiny out-
performed the original Yolov4-tiny where more and fewer true positives
and false positives were achieved. With better detection performance,
where many true objects were detected and fewer false ones were
avoided, WCL-Yolov4-tiny is appropriate for multifarious organizations.
Commercial fish packaging companies require a lightweight, fast, and
high-performance processing machine in sorting the freshness of fish;
this model supports the requirement in determining the position of fish
and body parts. The personal users of mobile applications with limited
storage and computation resources also require a simple and low
computational resource system to localize mixed fish in one bucket and
their freshness level.

The proposed WCL-Yolov4-tiny achieved a significant improvement
in object detection. The tail detection performance as a small object
increased true positives while decreasing false positives. False positives
detected in this case are background or intact fish whose parts are not
observable, for example, intact fish with head covered by other objects;
and the model detects them as intact fish, as shown by Fig. 12 (a). One
fish was detected with 0.56 confidence. Notwithstanding achieving
fairly good confidence, the object should not be detected due to an

11

incomplete body part. Another failed case is Fig. 12 (b}, the model
detected the background as fish with 0.27 confidence. This background
should not be detected, and we can ignore it by increasing the confi-
dence threshold. However, increasing the confidence threshold also
reduced the true positives achieved. For example, tail and fish with 0.26
and 0.28 confidence, respectively (Fig. 12(a)), are dismissed if the
confidence threshold increases to 0.3. Hence, by holding a confidence
threshold of 0.25, we achieved more true positive objects with fewer
false-positive ones. Another case of misdetection is Fig. 12(c), where a
tail with 0.54 confidence should not be detected as a tail. This body part
is a fin with an appearance looking like a tail. The similarity of the visual
appearance caused the failure of detection by our proposed model. Some
detection failures in this model are nevertheless an understandable
problem due to natural causes and parameter trade-offs used during the
experiment. The number of failures isslight because only four of the 120
test images were detected incorrectly.

5. Conclusion .
3

This research proposes an object detector model that modifies the

Yolov4-tiny model, called the WCL-Yolov4-tiny model. The model per-

forms better in detecting intact fish, fish eyes, and fishtails. The object

detected supports the fish freshness classification and is worth applying
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to devices with limited storage and computational resources. The WCL-

Yolov4-tiny model uses WCL to expand feature diversity, Tiny-SPP &

balance feature diversity and avoid excessive diversity of features, B

to reduce computational resource usage, and-d third-scale detector to
detect small-sized objects such as fishtails. The experimental results
show that the proposed WCL-Yo tiny model achieved a Precision,
Recall, AP, and mAP of 97.48%, %, 94.07%, and 92.38%, respec-
tively, which were higher than original Yolov4-tiny model. This
result indicates that the propos el can expand and avoid excessive
diversity of features and better performance in detecting objects with
different sizes. The proposed model is lightweight, high-performance,
and requires a low computational resource. Hence, it is applicable in
mobile devices with limited storage and computational resource in
detecting fish and body part localization. Therefore, it can be applied to
personal users and the commercial fishing industry.

This study found a new model that increases Recall on tail detection
from the original version by + 12.91% to 71.17%; indicating a signifi-
cant improvement. However, this performance was below 80%; the
subsequent research recommendation such as data augmentation and
post-processing could be explored to improve the
performance.
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